方差的无偏估计的证明

时间:2025-05-06 10:32:16
无偏估计的定义如下:
对随机变量 X X X的估计 X ˉ \bar{X} Xˉ,如果 E [ X ˉ ] = E [ X ] E[\bar{X}] = E[X] E[Xˉ]=E[X],则称 X ˉ \bar{X} Xˉ X X X的无偏估计。
根据方差的定义展开得:
E ( ∑ i = 1 n ( X i − X ˉ ) 2 ) = ∑ i = 1 n E ( X i 2 ) − n E ( X ˉ 2 ) E(\sum_{i=1}^n(X_i-\bar{X})^2)= \sum_{i=1}^nE(X_i^2)-nE(\bar{X}^2) E(i=1n(XiXˉ)2)=i=1nE(Xi2)nE(Xˉ2)
又根据 V a r ( X ) = E ( X 2 ) − ( E ( X ) ) 2 Var(X)=E(X^2)-(E(X))^2 Var(X)=E(X2)(E(X))2有:
E ( X 2 ) = V a r ( X ) + ( E ( X ) ) 2 = σ 2 + μ 2 E(X^2)=Var(X)+(E(X))^2=\sigma^2+\mu^2 E(X2)=Var(X)+(E(X))2=σ2+μ2
E ( X ˉ 2 ) = V a r ( X ˉ ) + ( E ( X ˉ ) ) 2 = 1 n σ 2 + μ 2 E(\bar{X}^2)=Var(\bar{X})+(E(\bar{X}))^2=\frac{1}{n}\sigma^2+\mu^2 E(Xˉ2)=Var(Xˉ)+(E(Xˉ))2=n1σ2+μ2
所以,
E ( ∑ i = 1 n ( X i − X ˉ ) 2 ) = ( n − 1 ) σ 2 E(\sum_{i=1}^n(X_i-\bar{X})^2)=(n-1)\sigma^2 E(i=1n(XiXˉ)2)=(n1)σ2

σ 2 = 1 n − 1 E ( ∑ i = 1 n ( X i − X ˉ ) 2 ) \sigma^2=\frac{1}{n-1}E(\sum_{i=1}^n(X_i-\bar{X})^2) σ2=n11E(i=1n(XiXˉ)2)
参考:/SoftPoeter/article/details/78273117