转载自:/ssw_1990/article/details/22286583
pandas提供了一个灵活高效的groupby功能,它使你能以一种自然的方式对数据集进行切片、切块、摘要等操作。
- 根据一个或多个键(可以是函数、数组或DataFrame列名)拆分pandas对象。
- 计算分组摘要统计,如计数、平均值、标准差,或用户自定义函数。
- 对DataFrame的列应用各种各样的函数。
- 应用组内转换或其他运算,如规格化、线性回归、排名或选取子集等。
- 计算透视表或交叉表。
- 执行分位数分析以及其他分组分析。
1、分组键可以有多种形式,且类型不必相同
- 列表或数组,其长度与待分组的轴一样。
- 表示DataFrame某个列名的值。
- 字典或Series,给出待分组轴上的值与分组名之间的对应关系。
- 函数,用于处理轴索引或索引中的各个标签。
注意:
后三种都只是快捷方式而已,其最终目的仍然是产生一组用于拆分对象的值。
2、首先来看看下面这个非常简单的表格型数据集(以DataFrame的形式):
- >>> import pandas as pd
- >>> df = ({'key1':['a', 'a', 'b', 'b', 'a'],
- ... 'key2':['one', 'two', 'one', 'two', 'one'],
- ... 'data1':(5),
- ... 'data2':(5)})
- >>> df
- data1 data2 key1 key2
- 0 -0.410673 0.519378 a one
- 1 -2.120793 0.199074 a two
- 2 0.642216 -0.143671 b one
- 3 0.975133 -0.592994 b two
- 4 -1.017495 -0.530459 a one
- >>> grouped = df['data1'].groupby(df['key1'])
- >>> grouped
- < object at 0x04120D70>
- >>> ()
- key1
- a -1.182987
- b 0.808674
- dtype: float64
数据(Series)根据分组键进行了聚合,产生了一个新的Series,其索引为key1列中的唯一值。之所以结果中索引的名称为key1,是因为原始DataFrame的列df['key1']就叫这个名字。
3、如果我们一次传入多个数组,就会得到不同的结果:
- >>> means = df['data1'].groupby([df['key1'], df['key2']]).mean()
- >>> means
- key1 key2
- a one -0.714084
- two -2.120793
- b one 0.642216
- two 0.975133
- dtype: float64
通过两个键对数据进行了分组,得到的Series具有一个层次化索引(由唯一的键对组成):
- >>> ()
- key2 one two
- key1
- a -0.714084 -2.120793
- b 0.642216 0.975133
- >>> states = (['Ohio', 'California', 'California', 'Ohio', 'Ohio'])
- >>> years = ([2005, 2005, 2006, 2005, 2006])
- >>> df['data1'].groupby([states, years]).mean()
- California 2005 -2.120793
- 2006 0.642216
- Ohio 2005 0.282230
- 2006 -1.017495
- dtype: float64
4、此外,你还可以将列名(可以是字符串、数字或其他Python对象)用作分组将:
- >>> ('key1').mean()
- data1 data2
- key1
- a -1.182987 0.062665
- b 0.808674 -0.368333
- >>> (['key1', 'key2']).mean()
- data1 data2
- key1 key2
- a one -0.714084 -0.005540
- two -2.120793 0.199074
- b one 0.642216 -0.143671
- two 0.975133 -0.592994
在执行('key1').mean()时,结果中没有key2列。这是因为df['key2']不是数值数据,所以被从结果中排除了。默认情况下,所有数值列都会被聚合,虽然有时可能会被过滤为一个子集。
无论你准备拿groupby做什么,都有可能会用到GroupBy的size方法,它可以返回一个含有分组大小的Series:
- >>> (['key1', 'key2']).size()
- key1 key2
- a one 2
- two 1
- b one 1
- two 1
- dtype: int64
分组键中的任何缺失值都会被排除在结果之外。
5、对分组进行迭代
GroupBy对象支持迭代,可以产生一组二元元组(由分组名和数据块组成)。看看下面这个简单的数据集:
- >>> for name, group in ('key1'):
- ... print(name)
- ... print(group)
- ...
- a
- data1 data2 key1 key2
- 0 -0.410673 0.519378 a one
- 1 -2.120793 0.199074 a two
- 4 -1.017495 -0.530459 a one
- b
- data1 data2 key1 key2
- 2 0.642216 -0.143671 b one
- 3 0.975133 -0.592994 b two
- >>> for (k1, k2), group in (['key1', 'key2']):
- ... print k1, k2
- ... print group
- ...
- a one
- data1 data2 key1 key2
- 0 -0.410673 0.519378 a one
- 4 -1.017495 -0.530459 a one
- a two
- data1 data2 key1 key2
- 1 -2.120793 0.199074 a two
- b one
- data1 data2 key1 key2
- 2 0.642216 -0.143671 b one
- b two
- data1 data2 key1 key2
- 3 0.975133 -0.592994 b two
- >>> pieces = dict(list(('key1')))
- >>> pieces['b']
- data1 data2 key1 key2
- 2 0.642216 -0.143671 b one
- 3 0.975133 -0.592994 b two
- >>> ('key1')
- < object at 0x0413AE30>
- >>> list(('key1'))
- [('a', data1 data2 key1 key2
- 0 -0.410673 0.519378 a one
- 1 -2.120793 0.199074 a two
- 4 -1.017495 -0.530459 a one), ('b', data1 data2 key1 key2
- 2 0.642216 -0.143671 b one
- 3 0.975133 -0.592994 b two)]
- >>>
- data1 float64
- data2 float64
- key1 object
- key2 object
- dtype: object
- >>> grouped = (, axis=1)
- >>> dict(list(grouped))
- {dtype('O'): key1 key2
- 0 a one
- 1 a two
- 2 b one
- 3 b two
- 4 a one, dtype('float64'): data1 data2
- 0 -0.410673 0.519378
- 1 -2.120793 0.199074
- 2 0.642216 -0.143671
- 3 0.975133 -0.592994
- 4 -1.017495 -0.530459}
- >>> grouped
- < object at 0x041288F0>
- >>> list(grouped)
- [(dtype('float64'), data1 data2
- 0 -0.410673 0.519378
- 1 -2.120793 0.199074
- 2 0.642216 -0.143671
- 3 0.975133 -0.592994
- 4 -1.017495 -0.530459), (dtype('O'), key1 key2
- 0 a one
- 1 a two
- 2 b one
- 3 b two
- 4 a one)]
6、选取一个或一组列
对于由DataFrame产生的GroupBy对象,如果用一个(单个字符串)或一组(字符串数组)列名对其进行索引,就能实现选取部分列进行聚合的目的,即:
- >>> ('key1')['data1']
- < object at 0x06615FD0>
- >>> ('key1')['data2']
- < object at 0x06615CB0>
- >>> ('key1')[['data2']]
- < object at 0x06615F10>
- >>> df['data1'].groupby([df['key1']])
- < object at 0x06615FD0>
- >>> df[['data2']].groupby([df['key1']])
- < object at 0x06615F10>
- >>> df['data2'].groupby([df['key1']])
- < object at 0x06615E30>
- >>> (['key1', 'key2'])[['data2']].mean()
- data2
- key1 key2
- a one -0.005540
- two 0.199074
- b one -0.143671
- two -0.592994
- >>> (['key1', 'key2'])['data2'].mean()
- key1 key2
- a one -0.005540
- two 0.199074
- b one -0.143671
- two -0.592994
- Name: data2, dtype: float64
- >>> s_grouped = (['key1', 'key2'])['data2']
- >>> s_grouped
- < object at 0x06615B10>
- >>> s_grouped.mean()
- key1 key2
- a one -0.005540
- two 0.199074
- b one -0.143671
- two -0.592994
- Name: data2, dtype: float64
7、通过字典或Series进行分组
除数组以外,分组信息还可以其他形式存在,来看一个DataFrame示例:
- >>> people = ((5, 5),
- ... columns=['a', 'b', 'c', 'd', 'e'],
- ... index=['Joe', 'Steve', 'Wes', 'Jim', 'Travis']
- ... )
- >>> people
- a b c d e
- Joe 0.306336 -0.139431 0.210028 -1.489001 -0.172998
- Steve 0.998335 0.494229 0.337624 -1.222726 -0.402655
- Wes 1.415329 0.450839 -1.052199 0.731721 0.317225
- Jim 0.550551 3.201369 0.669713 0.725751 0.577687
- Travis -2.013278 -2.010304 0.117713 -0.545000 -1.228323
- >>> [2:3, ['b', 'c']] =
- >>> mapping = {'a':'red', 'b':'red', 'c':'blue',
- ... 'd':'blue', 'e':'red', 'f':'orange'}
- >>> mapping
- {'a': 'red', 'c': 'blue', 'b': 'red', 'e': 'red', 'd': 'blue', 'f': 'orange'}
- >>> type(mapping)
- <type 'dict'>
- >>> by_column = (mapping, axis=1)
- >>> by_column
- < object at 0x066150F0>
- >>> by_column.sum()
- blue red
- Joe -1.278973 -0.006092
- Steve -0.885102 1.089908
- Wes 0.731721 1.732554
- Jim 1.395465 4.329606
- Travis -0.427287 -5.251905
- >>> map_series = (mapping)
- >>> map_series
- a red
- b red
- c blue
- d blue
- e red
- f orange
- dtype: object
- >>> (map_series, axis=1).count()
- blue red
- Joe 2 3
- Steve 2 3
- Wes 1 2
- Jim 2 3
- Travis 2 3
8、通过函数进行分组
相较于字典或Series,Python函数在定义分组映射关系时可以更有创意且更为抽象。任何被当做分组键的函数都会在各个索引值上被调用一次,其返回值就会被用作分组名称。
具体点说,以DataFrame为例,其索引值为人的名字。假设你希望根据人名的长度进行分组,虽然可以求取一个字符串长度数组,但其实仅仅传入len函数即可:
- >> (len).sum()
- a b c d e
- 3 2.272216 3.061938 0.879741 -0.031529 0.721914
- 5 0.998335 0.494229 0.337624 -1.222726 -0.402655
- 6 -2.013278 -2.010304 0.117713 -0.545000 -1.228323
- >>> key_list = ['one', 'one', 'one', 'two', 'two']
- >>> ([len, key_list]).min()
- a b c d e
- 3 one 0.306336 -0.139431 0.210028 -1.489001 -0.172998
- two 0.550551 3.201369 0.669713 0.725751 0.577687
- 5 one 0.998335 0.494229 0.337624 -1.222726 -0.402655
- 6 two -2.013278 -2.010304 0.117713 -0.545000 -1.228323
9、根据索引级别分组
层次化索引数据集最方便的地方在于它能够根据索引级别进行聚合。要实现该目的,通过level关键字传入级别编号或名称即可:
- >>> columns = .from_arrays([['US', 'US', 'US', 'JP', 'JP'],
- ... [1, 3, 5, 1, 3]], names=['cty', 'tenor'])
- >>> columns
- MultiIndex
- [US 1, 3, 5, JP 1, 3]
- >>> hier_df = ((4, 5), columns=columns)
- >>> hier_df
- cty US JP
- tenor 1 3 5 1 3
- 0 -0.166600 0.248159 -0.082408 -0.710841 -0.097131
- 1 -1.762270 0.687458 1.235950 -1.407513 1.304055
- 2 1.089944 0.258175 -0.749688 -0.851948 1.687768
- 3 -0.378311 -0.078268 0.247147 -0.018829 0.744540
- >>> hier_df.groupby(level='cty', axis=1).count()
- cty JP US
- 0 2 3
- 1 2 3
- 2 2 3
- 3 2 3