题目大意:太长了略
splay调了两天一直WA弃疗了
首先,我们可以猜一个贪心,如果买/卖,就一定都买/卖掉,否则不买/卖
反正货币的行情都是已知的,没有任何风险,所以肯定要选择最最最优的方案了
容易得到方程
$dp[i]=max(dp[i-1],a[i]*\frac{dp[j]*rate[j]}{rate[j]*a[j]+b[j]}+b[i]*\frac{dp[j]}{rate[j]*a[j]+b[j]})$
显然是要用凸优化了
splay非常无脑,splay维护此题的凸包,需要找前驱,删前驱,找后继,删后继,一大堆特判...绝对恶心到吐
所以这是一篇$CDQ$分治题解
令$x=\frac{dp[j]}{rate[j]*a[j]+b[j]},y=x*rate[j]$
移项,可得
$dp[i]-b[i]*x=a[i]*y$
$y=\frac{dp[i]}{a[i]}-\frac{b[i]}{a[i]}x$
发现斜率$k=-\frac{b[i]}{a[i]}$是一定的,我们在外层把斜率k从小到大排序,可以优化掉一个$log$,递归时按$x$从小到大排序
这样,递归时,每一层内部都是按$k$有序的,把这一层按照时间分为左右两个部分(不要破坏$k$的有序状态)
先递归处理左半个区间,回溯后,左半部分的答案已知,且不会被右半部分的答案所影响
且左半部分按$x$从小到大排序,右半部分按斜率$k$从小到大排序,取最小值,由于$k<0$,用单调栈维护一个上凸包即可
处理完了左边对右边的贡献,递归处理右半部分
回溯时,先处理$dp[i]=dp[i-1]$的情况,再按$x$排序,回溯到上一层
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N1 101000
#define M1 205
#define ll long long
#define dd double
#define uint unsigned int
#define inf 233333333
#define il inline
using namespace std; const dd eps=(1e-);
int n,m;
int stk[N1];
dd A[N1],B[N1],r[N1],X[N1],Y[N1],K[N1],f[N1];
//struct node{dd x,y,k,ans;int id;};
int cmp1(int s1,int s2){return K[s1]-K[s2]<;}
int id[N1],tmp[N1];
dd get_slope(int s1,int s2){
if(!s2) return inf;
return (Y[s1]-Y[s2])/(X[s1]-X[s2]);
}
void CDQ(int L,int R)
{
if(R-L<=) return;
int M=(L+R)>>;
int tp=,i,j,pl=L,pr=M,k,cnt;
for(int i=L;i<R;i++)
if(id[i]<M) tmp[pl++]=id[i];
else tmp[pr++]=id[i];
for(int i=L;i<R;i++)
id[i]=tmp[i];
CDQ(L,M);
for(i=L;i<M;i++)
{
k=id[i];
if(tp>&&fabs(X[stk[tp]]-X[k])<eps&&Y[k]-Y[stk[tp]]<eps) continue;
while(tp>&&get_slope(stk[tp],stk[tp-])<=get_slope(k,stk[tp-]))
tp--;
stk[++tp]=k;
}
for(i=M;i<R;i++)
f[i]=max(f[i-],f[i]);
for(i=M;i<R;i++)
{
while(tp>&&get_slope(stk[tp],stk[tp-])<=K[id[i]])
tp--;
k=id[i],j=stk[tp];
f[k]=max(f[k],A[k]*Y[j]+B[k]*X[j]);
X[k]=f[k]/(A[k]*r[k]+B[k]);
Y[k]=r[k]*X[k];
}
CDQ(M,R);
i=L,cnt=L,j=M;
while(i<M&&j<R){
if(X[id[i]]<X[id[j]])
tmp[cnt++]=id[i],i++;
else
tmp[cnt++]=id[j],j++;
}
while(i<M) tmp[cnt++]=id[i],i++;
while(j<R) tmp[cnt++]=id[j],j++;
for(i=L;i<R;i++)
id[i]=tmp[i],f[id[i]]=max(f[id[i]],f[id[i]-]);
};
dd S;
int main()
{
//freopen("t1.in","r",stdin);
scanf("%d%lf",&n,&S);
for(int i=;i<=n;i++)
{
scanf("%lf%lf%lf",&A[i],&B[i],&r[i]);
K[i]=-B[i]/A[i];id[i]=i;
}
f[]=S,X[]=S/(A[]*r[]+B[]),Y[]=X[]*r[];
sort(id+,id+n+,cmp1);
CDQ(,n+);
dd ans=;
for(int i=;i<=n;i++)
ans=max(ans,f[i]);
printf("%.3lf\n",ans);
return ;
}