POJ - 3685 Matrix

时间:2023-03-09 16:45:37
POJ - 3685 Matrix

二分kth,答案满足的条件为:m ≤ 小于等于x的值数cntx。x和cntx单调不减,随着x增大,条件成立可表示为:0001111。

本地打一个小型的表可以发现列编号j固定时候,目标函数f(i,j)似乎具有单调性。

变形,f(i,j) = (i+100000+j)*i + j2 - 100000,可以看出确实具有单调性。

于是得到如下算法: 二分x,统计cnt时候,枚举j,再套一个二分。

/*********************************************************
* ------------------ *
* author AbyssalFish *
**********************************************************/
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<queue>
#include<vector>
#include<stack>
#include<vector>
#include<map>
#include<set>
#include<algorithm>
#include<cmath>
#include<numeric>
using namespace std; typedef long long ll;
ll n, m; const int d = 1e5; inline ll f(ll j,ll i){ return (i+d+j)*i + (j-d)*j; } int upp_b(ll j, ll x)
{
if(f(j,) > x) return ;
int lb = , ub = n, md;
while(lb < ub ){
md = (lb+ub+)>>;
//f(j,md)>x? ub = md+1:lb = md+1;
f(j,md)<=x? lb = md:ub = md-;
}
return lb;
} ll solve()
{
if(m == ) {
ll ans = (*n+d)*n;
for(ll j = ; j <= n; j++){
ans = min(ans, (+d+j)+(j-d)*j);
}
return ans;
}
if(m == n*n){
ll ans = -(*n+d)*n;
for(ll j = ; j <= n; j++){
ans = max(ans, (n+d+j)*n-d*j+j*j);
}
return ans;
}
ll lb = -(*n+d)*n, ub = -lb, md;
while(lb < ub){
md = (lb+ub)>>;
ll upb = ;
for(ll j = ; j <= n; j++){
upb += upp_b(j,md);
}
upb >= m?ub = md:lb = md+;
}
return lb;
} //#define LOCAL
int main()
{
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif
int T; scanf("%d",&T);
while(T--){
scanf("%I64d%I64d",&n,&m);
printf("%I64d\n", solve());
}
return ;
}