[BZOJ 4591] 超能粒子炮-改

时间:2023-03-09 08:32:17
[BZOJ 4591] 超能粒子炮-改

Link:

传送门

Solution:

[BZOJ 4591] 超能粒子炮-改

记录一下推$\sum_{i=0}^k C_n^i$的过程:

其实就是将相同的$i/p$合起来算,这样每个里面都是一个可以预处理的子问题

接下来递归下去算即可

Tip:推式子时尽量化出与模数相关的量方便预处理

Code:

#include <bits/stdc++.h>

using namespace std;
#define X first
#define Y second
#define pb push_back
typedef double db;
typedef long long ll;
typedef pair<int,int> P;
int T;const int MOD=;
ll C[MOD+][MOD+],sum[MOD+][MOD+]; ll Lucas(ll x,ll y)
{
if(y==) return ;
return Lucas(x/MOD,y/MOD)*C[x%MOD][y%MOD]%MOD;
}
ll cal(ll n,ll k)
{
if (k<) return ;
return (cal(n/MOD,k/MOD-)*sum[n%MOD][MOD-]+Lucas(n/MOD,k/MOD)*sum[n%MOD][k%MOD])%MOD;
}
int main()
{
C[][]=;sum[][]=;
for (int i=;i<MOD;i++) sum[][i]=;
for (int i=;i<MOD;i++)
{
C[i][]=sum[i][]=;
for (int j=;j<=i;j++) C[i][j]=(C[i-][j-]+C[i-][j])%MOD;
for (int j=;j<MOD;j++) sum[i][j]=(sum[i][j-]+C[i][j])%MOD;
}
scanf("%d",&T);
while (T--)
{
ll n,k;
scanf("%lld%lld",&n,&k);
printf("%lld\n",cal(n,k));
}
return ;
}