R语言:R2OpenBUGS

时间:2023-03-09 07:46:38
R语言:R2OpenBUGS

R语言:R2OpenBUGS

用这个包调用BUGS model,分别用表格和图形概述inference和convergence,保存估计的结果

as.bugs.array 转换成bugs object

函数把马尔科夫链估计结果(不是来自于BUGS),转成BUGS object,主要用来plot.bugs 展示结果。

as.bugs.array(sims.array, model.file=NULL, program=NULL, DIC=FALSE, DICOutput=NULL, n.iter=NULL, n.burnin=0, n.thin=1)

sims.array :3维数组 n.keep, n.chains和combined parameter vector的长度

model.file : OpenBUGS编写的.odc 模型文件

DIC : 是否计算DIC曲线

DICOutput : DIC值

n.iter :生成sims.array 每条chain 迭代数

n.burnin :丢弃的迭代次数

n.thin :thinning rate

attach.all 添加数据到搜索路径

The database is attached/detached to the search path,While attach.all attaches all elements of an object x to a database called name, attach.bugs attaches all elements of x$sims.list to the database bugs.sims itself making use of attach.all.

attach.all(x, overwrite = NA, name = “attach.all”) attach.bugs(x, overwrite = NA) detach.all(name = “attach.all”) detach.bugs()

x : bugs 对象

overwrite :TRUE 删除全局环境中被掩盖的数据, NA 询问,FALSE

name : 环境name

bugs 最重要,用R运行bugs

自动输入值,启动bugs,保存结果

bugs(data, inits, parameters.to.save, n.iter, model.file=“model.txt”, n.chains=3, n.burnin=floor(n.iter / 2), n.thin=1, saveExec=FALSE,restart=FALSE, debug=FALSE, DIC=TRUE, digits=5, codaPkg=FALSE, OpenBUGS.pgm=NULL, working.directory=NULL, clearWD=FALSE, useWINE=FALSE, WINE=NULL, newWINE=TRUE, WINEPATH=NULL, bugs.seed=1, summary.only=FALSE, save.history=(.Platform$OS.type == “windows” | useWINE==TRUE), over.relax = FALSE)

data :模型中使用的数据

inits :n chain 的元素列表,每一个要素是一个模型初始值列表,或者一个生成初始值得function

parameters.to.save : 需要被记录的参数名向量

model.file : model 文件.txt

n.chains : 默认3条

n.iter :每条链的迭代次数,默认2000

n.thin : Thinning rate. 正整数,默认是1,

saveExec :使用basename(模型.file)保存OpenBUGS执行的重新启动映像。

restart :执行从上次执行的最后状态恢复,存储在工作目录中的.bug文件中。

debug : 默认FALSE,正在运行行时Openbugs 页面关闭

DIC :计算deviance,,pD,和DIC。

digits :有效小数位数

codaPkg :FALSE 返回 bugs对象,否则输出,用coda 包 read.bugs 读取,

OpenBUGS.pgm :通向OpenBUGS可执行程序的完整路径。

working.directory:OpenBUGS的输入和输出将存储在此目录中;

clearWD :是否这些文件的“data.txt”、“init(1:n.chains). txt”,“log.odc”、“codaIndex.txt”和“coda[1:nchain].txt”结束时删除。

bugs.seed :OpenBUGS随机种子,1-14整数

summary.only : TURE ,仅对非常快速的分析给出了一个参数概要

save.history : TURE,最后画出trace

# An example model file is given in:
model.file <- system.file(package="R2OpenBUGS", "model", "schools.txt")
# Let's take a look:
print(model.file)

[1] "C:/Users/Date/Documents/R/win-library/3.5/R2OpenBUGS/model/schools.txt"

file.show(model.file)

model { for (j in 1:J){ y[j] ~ dnorm (theta[j], tau.y[j]) theta[j] ~ dnorm (mu.theta, tau.theta) tau.y[j] <- pow(sigma.y[j], -2) } mu.theta ~ dnorm (0.0, 1.0E-6) tau.theta <- pow(sigma.theta, -2) sigma.theta ~ dunif (0, 1000) }

data(schools)
schools

  school estimate   sd
1 A 28.39 14.9
2 B 7.94 10.2
3 C -2.75 16.3
4 D 6.82 11.0
5 E -0.64 9.4
6 F 0.63 11.4
7 G 18.01 10.4
8 H 12.16 17.6

J <- nrow(schools)
y <- schools$estimate
sigma.y <- schools$sd
data <- list ("J", "y", "sigma.y")
data

[[1]]
[1] "J" [[2]]
[1] "y" [[3]]
[1] "sigma.y"

inits <- function(){
list(theta=rnorm(J, 0, 100), mu.theta=rnorm(1, 0, 100),sigma.theta=runif(1, 0, 100))
}
parameters <- c("theta", "mu.theta", "sigma.theta")

schools.sim <- bugs(data, inits, parameters, model.file,
n.chains=3, n.iter=5000)
print(schools.sim)

Inference for Bugs model at "C:/Users/Date/Documents/R/win-library/3.5/R2OpenBUGS/model/schools.txt",
Current: 3 chains, each with 5000 iterations (first 2500 discarded)
Cumulative: n.sims = 7500 iterations saved
mean sd 2.5% 25% 50% 75% 97.5%
theta[1] 11.2 8.9 -2.8 5.5 9.8 15.7 32.9
theta[2] 7.5 6.5 -4.9 3.4 7.4 11.5 20.8
theta[3] 5.8 8.0 -12.3 1.3 6.4 10.5 21.0
theta[4] 7.1 6.7 -6.3 3.0 7.1 11.2 20.9
theta[5] 4.9 6.3 -8.8 1.0 5.5 9.1 16.4
theta[6] 5.8 6.8 -9.2 1.7 6.1 10.1 18.3
theta[7] 10.4 7.2 -2.1 5.6 9.7 14.6 26.3
theta[8] 8.1 8.0 -7.1 3.4 7.8 12.4 25.7
mu.theta 7.6 5.4 -2.7 4.1 7.6 11.0 18.6
sigma.theta 6.7 5.9 0.2 2.3 5.3 9.4 21.8
deviance 60.5 2.3 57.0 59.2 60.1 61.6 66.2
Rhat n.eff
theta[1] 1 410
theta[2] 1 420
theta[3] 1 1200
theta[4] 1 610
theta[5] 1 680
theta[6] 1 490
theta[7] 1 300
theta[8] 1 420
mu.theta 1 310
sigma.theta 1 540
deviance 1 1600 For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1). DIC info (using the rule, pD = Dbar-Dhat)
pD = 2.9 and DIC = 63.4
DIC is an estimate of expected predictive error (lower deviance is better).

plot(schools.sim)

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAArwAAAGwCAMAAAB8TkaXAAACAVBMVEUAAAAAAAMAAA0AABAAADoAAFgAAGYAAP8AAwMAA0EADVEAEFwAKAAAKIEAKjoAMlEAOioAOjoAOmYAOpAAOpwAOp0AWGYAZmYAZpwAZrYAzQADAAADAAMDABADAw0DA0EDLaEDQf8NAAANAwMNDQ0NDVENUYYNUbwN//8QAAAQAAMQABAQXP8XZrwXZtsgDQAoAAAoOgAogf8qFwAqOpAtAwAtAwMtAxAtof8xOmYxUTIyOpA0BAA6AAA6ADo6AGY6KDo6Kjo6MVE6OgA6OmY6OpA6ZmY6ZrY6kKE6kLY6kNs6nP9BAwBBAwNB//9JOgBJtv9RDQBYAABYAGZcEABc/1xc//9mAABmADpmAFhmAGZmMVFmOgBmOjpmOmZmOpBmZgBmZmZmgWZmkJBmnJBmtrZmtttmtv9vOgB7IACBKACQOgCQOjqQOmaQZgCQkDqQkGaQkLaQtpCQ27aQ2/+dZgCdkDqhLQOh//+2ZgC2Zjq2Zma2kDq2tma225C2/7a2/7y2/9u2//+8kDq825C8//++vr7bZhfbezHbkDLbkDrbtmbb25Db27bb2//b/1zb/7bb/9vb////AAD/DQD/DQP/QQP/QQ3/XBD/gSj/nDr/nTr/oS3/oaH/tmb/vFH/23v/25D/29v//w3//0H//1z//6H//7b//7z//9v////x2TByAAAACXBIWXMAAA7DAAAOwwHHb6hkAAAcHElEQVR4nO2di6Mbx1XGB2quU8KrFhDktDRQHn3wLLQNlGtT6psSEQqUtDLBTsIrC1wnIUWQyhRKRElBvoCjpOBCurA0ttD5K5kzM7s7+9L7Sns03y+OrrSzOzvnnE+zZ1c7s4oAEIradwMAWBeIF4gF4gVigXiBWCBeIBaIF4gF4gViWSDe2Wlk3yQnk3TZ9Dl+O+6Ne7pYKbvC7NYX9RreWuWKbv2FUurCoFBHTcEi/A2/eKy37PK7fGu/BcnJmf6vqUW82TBtvn5zNMqrZLu4YvunSsKrRWZn/D+vxxbEZmmhPem+PD8Wi6suq7javjEOp7S1UX0NzQFo2EO+6O5zk3y59Uds9uO/uhXLW0/9bUtYmfyRV2ytcs6t7smgHTbHFufONcRr3457cW922qPp9YFdeDZXvMnJHd3S5OqoXF2pYBH+hrxH3n3TXpO5LbJ7nj7DO3Z6yqocs34jNo+GdepN7GpuB2a9+GjERiRXatvj+7FYPFe82Vv9hh1uP8Rps5tqWETtFn7LrD/Ywqsj/7Vp63le/kyl2AnI+riyJ9eC06haV0YqXnX0csRfgp6p9toN9eSpfj82C8bq0o2Ivw/ddIf6rV65o9/HUWy/G//yr+zJcS+LpNnUbnTtxtFr9rN2PatgGOV1mFWKBT3TqWkZmP4pa42t7Im+3fCNtEaze97QvNMq421Ozng95yTd8+o6bENG47RJz/eMAExHZlXgfJZXmX/QKySmDq8VVry2t9H/x+wPuj1IY6S3nOfHcc/5yJpqK09X1K/JibOQO6fOSx3tUl1X5452eBY9J95SDVy9NT+LKOMcbV79LayMnN/0os5Zttz4w0XBe3UScbHLvMrt1F972/rS/m8PaNpXR3/HkbBicAJynqrsySxnh2V+MG2msbdL5041mPaj7Kus+w3+d3KWfg2SY6PQodWpfuFYZt+jOO+VbqfdkK3LbaS7IVf37YFZ2SjClttVvAKzT+5Jx11nTNoaW5kuNxtmNbr+T7/TK09vmipt211oWbzHER+BbH/I2/O7qyP+6mq3ao8YQcTvOeao5VUaeZiG2Xa4o1jWCptdOJO9w/nRyPpinh+NxboSZ+qVAVfo93D5EcFs0xt2y32Xa3ahBudXa77fOWc7Lu3TGpf7Tb+ky60/2P5h5L86p07y8HrhzIz1929ebXEmhswYXrGyJ/vdMQ674/vJD59zpzKtOM76KmvIHVMNB0VXqeOkbC/E34ELg6RGvK5JvPGx66XcRvZzKgVdZVqHXSUvsE13+0m/ibY1aWVuWVqjkVCPbMcf924PuHb2rZcFaI+mfWjWeKtEF1zbzf7vhMZRXqXVRSZevY3eQbEVXtpg/GTTtWn/aJR9N+v9eNfspZsePW2FfvR0s7146NZ2arIfJ6S8htQ8a34WUUpj4cfO6+IKfsuXG380i9fTRFptamxS3H/a6bm00jPc+ri6J6sSzw9u9az9njtN98clUZN4swMM53UuZPl3OpNxlmFyXd5G6WeXHWR12FW8gqJ47UpZazxBZzXatcz2ycmXo/hJDqGLnhZTtyher/FxV5vmvnlZt2m+Pq5Kk7pSljZY8ZZbYRubpQ32W5BV0+hHYw1b0CzeiRcP/fZCTRptml2owZmXfnddDVkX48cu8b7fvt8S/2xynH9RC2mDEW8W3qzaonh9RXni9Q23Pq7uyRPvxFs9b3/uTpM2jHm3PU+8+RGgH+UHTaM0v+c1J2z9no2c7d3J1pVvZD/r8tiel2V12FXygjxtiDt6/+awO0kPOLYya2BWo7Hu6mhoTvCvjZInnptUe16bNrCb88ZPr18bkduz0Ry/GUd5lTYTS0/YnDHFVuQHNLseZ198weLUVdPox5ci5xNnqq2wkDZ82YuH3kZ/OQrizZrt15CaZz9lEbUi4UpMub+FiWDBb5l6rD9qT9jS/KLs1czY4v69tCETg/sGmeqqe7JF7DDnB9vmO1n4cnfqE7bnIz7odSaeeDn3jji1uvBp/4RNZ96P9KNpP823eYE5br92y14o4gJbV74Rf35Dl8f2ilheB68yywvI7tNm50N16WYm3klaGadoesO0Rlu9XpG/rB170l8Rrz1hY7GZHSfZmS6vM0zTDn4zy6rsvGSPtO5qTuGELT0qptd2bK+rnL/yapr8eO3mIPWRd25K6Yr2Apwp529H/9INDmDX+TxNddKzIa+G1DxnflqDETvv2JYX9kkFv93te6IepmfddZfK+p0sInk4z5yxibd/Xv/2wO95bbP6Tie8k+qeyDks9YNtsxe+zJ2q7qrkobOiyZVj9v74myWvKK63+nnAl8rOC+VdUgmFuP6Xh0baI97ZK+e5+vmQnVRsH/w8DMQC8QKxQLxALBAvEAvEC8QC8QKxQLxALBAvEAvEC8QC8QKxQLxALBAvEAvEC8SyuXjtwD5zK+bs1Iz08waAkD9YvYRdQW8zb5woVW7q8j+ufL+XG3xW3raxjXKYP1a8uCL/2TBsrWBj8dqb/e1N8DHfXO6PynYrNG45r7ipgo2cl2QDLDf7ErSP+WPFKytuGrZWsBXxpsOPjBey0Sd2FHY+yp2HLb/cMzd4jv3BGWb4dM+OaqZ5A7WbR3qv0tp0tJlXjzcYWwrFaQHSseKTcT48Px997i10o/A3C9sbpy25CXzztMEMELTDqvj4k30x01HYSWmktPVZNgKai+3wpStZh9gwULt5pPfyjfV63kI9wrRLlWkBzGjwM2tNcfR54i20K5oK1g/bneKkJ/tjY/HGnYkd3uc6tGE0TMfDnaUmeyOlbw/MFCqFYdj+uOF5A7ULHwsjvZdubTa0vVyPOPEWpgXIhtum1hRGv3sL7Yq0WdjOjlccinJebCxedkfc9QSmbc8H+DsveKPnuzxqtzgMuyje5oHa/sfySO8lSezQdjsw3q9HrHiNu1Lx3jnKB/Bmo89jb2Em3s3Clo+r3yvb6Hnt8GQzatlaXfaCN3p++uyzo8IQ+jxtyEbzNw3Ubh7pvXRr3dBp99arR6p43bQAbqx4Nj7cH30eewvtirRZ2LKR+ftm85yXe7HpM3+r1B8qO9lI6fgz7X+PyiZHshPXecOYp9d/cUJfU+qj2VlsPlD7BX1ioM/Q/lOpF9xY9sJI7+9S6o9Pzj6l1KeaxHv/I18oLXFD2/9NF3A9v8ItK47m1zz4mFIPb+yX8yUpTAuQjhW/mzrWH30+9RfaYeNkw5YNNq8NmzfAvRS2bFz7ntnKjxQ8yRH5c/wVS5sKFm1p5xFsKs0m/Gqs/P6H3lUWb7Hgwccfryt+9WGt35+qrxO0iG2Id/biV/TJZ9J0AG8sWLgl5VMB1Rbak+Km0gef+Hyl5y0WvP2+enFrXn2M6N5jTaWgFWzn52G+cpKfuZZoLFi4ZTZBX30pz5U4t/Jq2lAsuPfQow35gVkB4m057RZvOo9e0+bezIJ1LBIvffNL9GpdfnD/w4/TPc6H2576hs2m4rV5/3TNtGHRlm6uxvWSiiXESzY/KPP2e00ujJ635Wyv513rhG3ulnbhnBM23efOrXxh2qA71pqeN02FId6Wsy3xqn0Rq+br5fc3qnkrngHniBei0iNdsnviYr6op3vIuTcvzg/14ZWCFuCFKCk+qCZ7H3fd9djmM6NFvL5+AwFoIheveaRLPo2yuSfO3AOnxWuvx0K8oFWUet70NkF3j5K5B87cnzHdgnjf3JSVjcOh/6CppA18swqfrvTc3UMXBlsR78WtsKpxEO9BUyve9FY4ew/cN+xz+ziR+Oiae0HaAM6BOvFmt8LZe+C+8d007k5/70ZEfw7xghbhXyrLHgfj7krs2DvstHg5bfjrnjjxIm04bJYIrxGvSXrXFO/l1VjjzKwBiPewWSK899R3/uNQqd/4v99Ra97kev6nZiBElut54x+88pfr97zIecG5sJx47bhpiBe0iuXE6x61uZp4d/djRBPIeQ+bpU/Y+BeK1cS7w18jGoB4D5slT9iIxr/862ufsCFt2Iyhue1zaB4vDnKWPGHrJsc/jx8p9oQdJx13JnErBpy3hyXTBv3d/0kSJ97DSRu0eMe9dIYw3CrvWFK8YzMd1lriRc67OUN9tjyOaPZiNuDpUCzbiOVy3q/+glLf8ffIefeH6T28uRkhXlq25/3ndS6VeUC8mxD3WLzFnBfipRV+pFg7bWAg3o2w8wsUrjZAvLT01Yb3HKvvX128+/pxIuVgct4qh2vZCiyV83Ym/6TU971wumLOu6/ztAyI97BZTrx8n++f/fSq4s1B2rBtIF5aNm342g8QX6pBztsaIF5a+sac31Lr5LwZ+JFi2xyuZSuwpHh5EvjVe97Le/yBgglAvIdr4RIs9yPFn/J13p/AjxTtAeKl5W/MoeTnfltc2nAg8OMA+dBXd50X4p2PubdBqZ+Rl/MeSN5gJ3Ot/4XtIAxcl2VvRjfT7m0o3hVHEadDiTf48eIwxMuMo/q7ylY38GBcsvTN6Dzj3vqjh4141zp5O58fL+ShO9/6u8og3vnwvQ3Xfve1U1zn3Rv8FLT6u8og3vmweH/tk2/cGkC8+2F26p5ZuZWc94Cy5SVz3v8yZ7rrindfg4gPJOV1Y7e3dLUhOPHaZ4TvcCTFdnLdAxFvHRAvLSde1fmHnj5s/RCmOG0PZQkuL8WwxMsTnZpnhGNa//bQJF5VXmHhloJZTrzpvfwQb1tYWbyVggMXr3u2lZ0onT/+FcTbFiBemm+Ce7aVeQ6b5n9+ds5z2OYD8W4biJeK0/pfu6GePFXZ43wbn221OizefQxka9XlhqaHNK7F0uJdWCAYX7xX+GkUyclZ+izqpmdbrb6X1/f0Y3CrxNv0kMYlsM9imnedd2nxZu5tk2vWxBevcW5JvHXPtlp9L0gbNjqQxepoVP8LW0WKEO9ker0o3uKzrVbfC8RLGxzIZq/wHTm1d5WtLt4sLztE8f73j3/16kg7mcrPtvqT3//k2a+aZ1uZtVdK2SBe2uhAZsRbd1fZ5cvFz4vFm26x/Vkydk9NzzsZqks3uYcoPtsqufa57/2lz/GzrdK1l98LxEsbHciKPS9TEm81GVgk3kO4z9QTL4826RmfqqOXo/TaA7m8bKNrDxg9TM0PaVxiUxbv3LvKUilm/WlZzXlHW044BOOF185hnJzcvT6Y9iPv2oP9wm9y7eH1pUdRbPVo1i7xNj2kcYlNTb4w72pDpT8tqznXajnhEIyfNhxzP2rkmomT/7m8bJNrD6+vcnPZOVl6WCwSb3nBoYvXyDcqi/dOmpdtcu0BOe+2aUhpc0mWsoNKwYFdbRjzrTe9LG1IxZvmZRukbBDv1ln2R4rK5YgDFS/fOtaZ2BO25zPx2ryscu2hnLLNd8Xhle4b/DxMTSbYX9hWqmdfnF+rVvTAboF4qdaEaZ8vmYFWA/HStkwwV8xi1XDLZGPBgi35wnO3eXP7aL15ld//yBfmFzyt1Luqqzz4mFIPN9XZEiBe2pIJ0/7RiKbXB8nVuqu+jQWLttRnkPrMsKnUXpaeV/n9D9Uo0y948PHH64pffVjrd935Vc6J8uMv1xdveQXBbMOE2Ytf0f1nehtwhcaChVsST7Uxp9T+YtJU+uATn6/vebOCt9/X0DNrAT9GdO+xptKdU3n8ZTluEO/a8ME/bhrk1liwcEtT3Fw61gnD3MoXpQ33Hnq0IT8wK7RIvIUbG8zp5OtFVOlvZUF5g3zBXg3biHaLl38Dmbf5MNpIvPTNL9GrdfnB/Q8/TvdYIm1JfYu3lBF6XsOmJthhxdM104ZFW/KdmWsnFUuIl2x+UObt95pcuK09L9MUN4h3Zdixa52wzd3SLpxzwqb73LmVL0wbdMda0/OmqXCLxLsw521cfkAXFyq0+VKZm6NrzqWy3gaXyvj/p5WqEejTvN/2CNfQdLWhDMQLWs/K4j1EDtm2QwZxIzhBKogbwQlSQdwITpAK4kZwglQQN4ITpIK4EZwghMpkZYgbwQkyqE5WhrgRnCCC0mRl7R+ktCPgBBFUJysDEG/7GfJte9XJygDEK4TqZGUA4hVCdbIywzuP/oj5+6NKfdD+/bbP2pKn3m3+vKW+3X50K+g3do2nsjUFA/FK5j8+YMVL77zXSvEtq1n694feb/4+ZcX7zqNOxHqJ3eIt9e7dNfO8gHhF83UrxbQHph/7TdPBfkulPa0V6zuPftAW0Ds/bBd/4LNugWQgXtF8vSlt+Nb7yV+QZQluOdIGAPYKxAvEAvECsUC8QCwQLxALxAvEAvECsUC8QCwQLxALxAvEAvECsUC8QCwQLxALxAvEAvECsUC8QCwQLxALxAvEAvECsUC8QCwQLxALxAvEAvECsUC8QCwQLxALxAvEAvECsUC87Wd2qlRnUjPDaehAvO0n7hINI8wtXQHilcE4ymf1xwNVHHCCCHTnW3yeCuJGcIIMhjpxKD5PBXEjOEECs9NIvxZzXsSN4AQJDDnH7RWvNiBuBCdIBXEjOEEqiBvBCVJB3AhOkAriRnCCVBA3ghOkgrgRnCAVxI3gBKkgbgQnSAVxIzhBKogbwQlSQdwITpCKKv0NkqCNFwzES4EbLxiIlwI3XjAQLwVuvGAgXgrceMFAvBS48YKBeClw4wUD8VLgxgsG4qXAjRcMxEuBG79nps9NkpOJ/7FxTZ6woXb0cNDxC9r4PaOV64vXf18kVkejhnkbgo5f0MbvluTaDfXkqeppkc5uDczkj50zvazL6lRd/jgZK/5YYvYKz/NUP1dZ0PEL2vjdklwZ8L+TMyde0/NeGWhFcp87jGxH7E3plGPEWztXWdDxC9r43WLFWRKveR+bKXFYwslx7SS8xZ6XgXgpcON3iyfe6fWieLuuPD4a2aISLF7kvBWCNn63ZOK9OtLZAnni1R9np5w2aBXHTT0vrjZUCNr43ZKKdzJUl25yqjvtd1wKwSdspD/e7atH+tEylbm4Xbx4ni1uOxCvTCBegnilgrSBAjdeMBAvBW68YFzcLl/ebzP2C8QrE4iXIF6pIG2gwI0XDMRLgRsvGIiXAjdeMBAvBW68YCBeCtx4wUC8FLjxgoF4KXDjBQPxUuDGCwbipcCNFwzES4EbLxiIlwI3XjAQLwVuvGAgXgrceMFAvBS48YKBeClw4wUxLM3nAPFS4MbLoThpAyFuBjhBBIXpcvy5yoIGThBBcaIyYIF4RVCcqAxYIF4RVHJeQBCvFMpXGwBBvEAwEC8QC8QLxALxArFAvEAsEC8QC8QLxALxArFAvEAsEC8QC8QLxALxArFAvEAsEC8QC8QLxALxArFAvEAsEC8QC8QLxALxArFAvEAsEC8QC8QLxALxArFAvEAsEC8QC8QLxALxArFAvEAsEC8QC8QrATOx9FBhmtMiEK8AYnU0otktKLcExNt+Zq/w8yimN49V13zGA1UccIIEWLyx7n3HUboEcSM4QQbpk4DiXroEcSM4QQam5+0Ret4icIIETM87VKqXLcHjWylw4wUD8VLgxgsG4qXAjRcMxEuBGy8YiJcCN14wEC8FbrxgIF4K3HjBQLwUuPGCgXgpcOMFA/FS4MYLBuKlwI0XDMRLgRsvGIiXAjdeDG4YkDcKCOKlwI2XghkGFHcm+l+6COKlwI0Xgh0GNO7ZDrg4DCjo+AVtvBiMeKNsQAWh5zUEbbwYij0vA/FS4MaLwQwDQs5bJmjjxeCGAeFqQ5GgjRcMxEuBG78PkpNJfcH0uYlfpj/OqwbipcCNbxVaub54G0VugXgpcON3y+yUx65rUcbq6OUouXZDPXmqF4yVmcVJl3bO9LIu/yahuvxx4orqgHgpcON3S9zla13Jyd3rg2k/Sq4M+N/J2cnEXgHjnvfKwKwxoWFkO2Lv4lgRiJcCN363JGaiPCPXTJz879heRbCfZrcGMf+A1mMJp0U1QLwUuPG7RosxKov3ztFoer0oXpMqcHqRFtUA8VLgxu+WsRblsJelDal4uxQXe16dPMxOuTxOi2qAeClw43fMUOmTMHvC9nwm3rt99Ug/0rnttN85M+I1J2ykP9qi+rogXgrc+L2x+SznEC8Fbvx+mPb96R7XxMXt4sVNK5IMxCsTiJcgXimUHwXk4vbmm3tpTUuAeEVQSZJd3C5f3n1b2gPEK4L8UUBUGAYE8YLWU3wUEOFqgyFo42WRPwqIIF5D0MbLofgoIIJ4DUEbL4hh6dowxEuBGy8YiJcCN14wEC8FbrxgIF4K3HjBQLwUuPGCgXgpcOMFA/FS4MYLBuKlwI0XDMRLgRsvGIiXAjdeMBAvBW68YCBeCtx4QQxL048gbgQnCKE4szQhbgY4QQSFOf39B6oEDZwgguLTVIAF4hVB8WkqwALxiqCS8wKCeKVQvtoACOIFgoF4gVggXiAWiBeIBeIFYoF4gVggXiAWiBeIBeIFYoF4gVggXiAWiBeIBeIFYoF4gVggXiAWiBeIBeIFYoF4gVggXiAWiBeIBeIFYoF4gVggXiAWiBeIBeIFYoF4gVggXiAWiBeIBeIFYoF4gVggXiAWiFcAY6W6PEUv5ugtAvG2n5iVG81uQbklIN72M/4D7nmnN4+5/yU8DSgDTmg/wy4/Dig+GvFDgRyIG8EJEmDJxj1+Z18ZxI3gBAnEtuftEXreInCCAMZK9czVhl62CHEjOEEqiBvBCVJB3AhOkAriRnCCVFTpb5AEbbxgIF4K3HjBQLwUuPGCgXgpcOMFA/FS4MYLBuKlwI0XDMRLgRsvGIiXAjdeMBAvBW68YCBeCtx4wUC8FLjxgoF4KXDjBQPxUuDGCwbipcCNFwzES4EbLxiIlwI3XjAQLwVu/M6ZnUb+x+Rksm5NEC8FbvzOKYl3WdK5yrypylzcLl7cSruEAvHujrG6dCOimJU47umPPd3zGl0mT/RZncmxOhrZ8gJ2rrK4M9H/0mUQL0G8OyS5OkqOI04Vhvw6uzVITs5OJtNnRrpEv06vD2jcteWFDe1cZVrveiX+7M1V9uabOzejRUC8O4N7W92BsvJ6dHuQfIZzXt3bXhikUuZ+1ZX72LnKxhHNXhyly5DzUuDG7xYnXpsTxF3dvSYnd464wy2It1vd0MxVlve8DMRLgRu/Wzg56EfJlQGftk2ffXbE4u1SnPa8nDbEnTNb7uPmKqvLecOOX9DG75ixuvDpKD0h41wgObnbV4/0XQbceMKWzVVWvdoQdvyCNl4wEC8FbrxgIF4K3HjBQLwUuPGCgXgpcOMFA/FS4MYLBuKlwI0XDOJGcIJUEDeCE6SCuBGcIBXEjeAEqSBuBCdIBXEjOEEqiBvBCVJB3AhOkAriRnCCVBA3ghOkgrgRnCAVxI3gBKkgbgQnSAVxIzhBKogbwQkiGCoeOGxfHYgbwQkS4GHx6WsK4kZwggSmN49V170y3lxlYQMntJ/4aMQz5pjXfbelVUC8Moh7+StwQLzthyWre94eoectAvEKYOjmKitNfRo8EC8QC8QLxALxArFAvEAsEC8QC8QLxALxArFAvEAsEC8QC8QLxALxArFAvEAsEC8QC8QLxALxArFAvEAsEC8QC8QLxALxArFAvEAsEC8QC8QLxALxArFAvEAsEC8QC8QLxALxArFAvEAsEC8Qy/8DWgemr9pitYsAAAAASUVORK5CYII=" alt="" />

bugs.data 生成输入文件

bugs.data(data, dir = getwd(), digits = 5, data.file = “data.txt”)

bugs.inits 生成初始值文件

bugs.inits(inits, n.chains, digits, inits.files = paste(“inits”, 1:n.chains, “.txt”, sep = “”))

bugs.log 读取log文件(summary statistics and DIC information)

bugs.log(file)

plot.bugs 画bugs对象

plot(x, display.parallel = FALSE, …)

display.parallel :在摘要图的两部分中显示平行的间隔

print.bugs 输出bugs对象

print(x, digits.summary = 1, …)

digits.summary:四舍五入的位数

read.bugs

读Markov链蒙特卡罗输出的CODA格式。并返回一个类mcmc.list对象。使用coda包进行进一步的输出分析列表。

read.bugs(codafiles, …)

validateInstallOpenBUGS 比较R和openbugs软件运行结果

write.model 转化R function创建模型文件

schoolsmodel <- function(){
for (j in 1:J){
y[j] ~ dnorm (theta[j], tau.y[j])
theta[j] ~ dnorm (mu.theta, tau.theta)
tau.y[j] <- pow(sigma.y[j], -2)
}
mu.theta ~ dnorm (0.0, 1.0E-6)
tau.theta <- pow(sigma.theta, -2)
sigma.theta ~ dunif (0, 1000)
}
## some temporary filename:
filename <- file.path(tempdir(), "schoolsmodel.txt")
## write model file:
write.model(schoolsmodel, filename)
## and let's take a look:
file.show(filename)

LS0tDQp0aXRsZTogIlLor63oqIDvvJpSMk9wZW5CVUdTIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCiMgUuivreiogO+8mlIyT3BlbkJVR1MNCg0K55So6L+Z5Liq5YyF6LCD55SoQlVHUyBtb2RlbCzliIbliKvnlKjooajmoLzlkozlm77lvaLmpoLov7BpbmZlcmVuY2Xlkoxjb252ZXJnZW5jZe+8jOS/neWtmOS8sOiuoeeahOe7k+aenA0KDQojIyBhcy5idWdzLmFycmF5ICAg6L2s5o2i5oiQYnVncyBvYmplY3QNCg0K5Ye95pWw5oqK6ams5bCU56eR5aSr6ZO+5Lyw6K6h57uT5p6c77yI5LiN5piv5p2l6Ieq5LqOQlVHU++8ie+8jOi9rOaIkEJVR1Mgb2JqZWN077yM5Li76KaB55So5p2lcGxvdC5idWdzIOWxleekuue7k+aenOOAgg0KDQphcy5idWdzLmFycmF5KHNpbXMuYXJyYXksIG1vZGVsLmZpbGU9TlVMTCwgcHJvZ3JhbT1OVUxMLA0KRElDPUZBTFNFLCBESUNPdXRwdXQ9TlVMTCwgbi5pdGVyPU5VTEwsIG4uYnVybmluPTAsIG4udGhpbj0xKQ0KDQpzaW1zLmFycmF5IO+8mjPnu7TmlbDnu4Qgbi5rZWVwLCBuLmNoYWluc+WSjGNvbWJpbmVkIHBhcmFtZXRlciB2ZWN0b3LnmoTplb/luqYNCg0KbW9kZWwuZmlsZSDvvJogT3BlbkJVR1PnvJblhpnnmoQub2RjIOaooeWei+aWh+S7tg0KDQpESUMg77yaIOaYr+WQpuiuoeeul0RJQ+absue6vw0KDQpESUNPdXRwdXQg77yaIERJQ+WAvA0KDQpuLml0ZXIg77ya55Sf5oiQc2ltcy5hcnJheSDmr4/mnaFjaGFpbiDov63ku6PmlbANCg0Kbi5idXJuaW4g77ya5Lii5byD55qE6L+t5Luj5qyh5pWwDQoNCm4udGhpbiDvvJp0aGlubmluZyByYXRlDQoNCiMjIGF0dGFjaC5hbGwg5re75Yqg5pWw5o2u5Yiw5pCc57Si6Lev5b6EDQoNClRoZSBkYXRhYmFzZSBpcyBhdHRhY2hlZC9kZXRhY2hlZCB0byB0aGUgc2VhcmNoIHBhdGjvvIxXaGlsZSBhdHRhY2guYWxsIGF0dGFjaGVzIGFsbCBlbGVtZW50cyBvZiBhbiBvYmplY3QgeCB0byBhIGRhdGFiYXNlIGNhbGxlZCBuYW1lLCBhdHRhY2guYnVncw0KYXR0YWNoZXMgYWxsIGVsZW1lbnRzIG9mIHgkc2ltcy5saXN0IHRvIHRoZSBkYXRhYmFzZSBidWdzLnNpbXMgaXRzZWxmIG1ha2luZyB1c2Ugb2YgYXR0YWNoLmFsbC4NCg0KYXR0YWNoLmFsbCh4LCBvdmVyd3JpdGUgPSBOQSwgbmFtZSA9ICJhdHRhY2guYWxsIikNCmF0dGFjaC5idWdzKHgsIG92ZXJ3cml0ZSA9IE5BKQ0KZGV0YWNoLmFsbChuYW1lID0gImF0dGFjaC5hbGwiKQ0KZGV0YWNoLmJ1Z3MoKQ0KDQp4IDogYnVncyDlr7nosaENCg0Kb3ZlcndyaXRlIO+8mlRSVUUg5Yig6Zmk5YWo5bGA546v5aKD5Lit6KKr5o6p55uW55qE5pWw5o2u77yMIE5BIOivoumXru+8jEZBTFNFDQoNCm5hbWUgOiDnjq/looNuYW1lDQoNCiMjIGJ1Z3Mg5pyA6YeN6KaB77yM55SoUui/kOihjGJ1Z3MNCg0K6Ieq5Yqo6L6T5YWl5YC877yM5ZCv5YqoYnVnc++8jOS/neWtmOe7k+aenA0KDQpidWdzKGRhdGEsIGluaXRzLCBwYXJhbWV0ZXJzLnRvLnNhdmUsIG4uaXRlciwgICAgIG1vZGVsLmZpbGU9Im1vZGVsLnR4dCIsDQpuLmNoYWlucz0zLCBuLmJ1cm5pbj1mbG9vcihuLml0ZXIgLyAyKSwgbi50aGluPTEsDQpzYXZlRXhlYz1GQUxTRSxyZXN0YXJ0PUZBTFNFLA0KZGVidWc9RkFMU0UsIERJQz1UUlVFLCBkaWdpdHM9NSwgY29kYVBrZz1GQUxTRSwNCk9wZW5CVUdTLnBnbT1OVUxMLA0Kd29ya2luZy5kaXJlY3Rvcnk9TlVMTCwNCmNsZWFyV0Q9RkFMU0UsIHVzZVdJTkU9RkFMU0UsIFdJTkU9TlVMTCwNCm5ld1dJTkU9VFJVRSwgV0lORVBBVEg9TlVMTCwgYnVncy5zZWVkPTEsIHN1bW1hcnkub25seT1GQUxTRSwNCnNhdmUuaGlzdG9yeT0oLlBsYXRmb3JtJE9TLnR5cGUgPT0gIndpbmRvd3MiIHwgdXNlV0lORT09VFJVRSksDQpvdmVyLnJlbGF4ID0gRkFMU0UpDQoNCg0KZGF0YSDvvJrmqKHlnovkuK3kvb/nlKjnmoTmlbDmja4NCg0KaW5pdHMg77yabiBjaGFpbiDnmoTlhYPntKDliJfooajvvIzmr4/kuIDkuKropoHntKDmmK/kuIDkuKrmqKHlnovliJ3lp4vlgLzliJfooajvvIzmiJbogIXkuIDkuKrnlJ/miJDliJ3lp4vlgLzlvpdmdW5jdGlvbg0KDQpwYXJhbWV0ZXJzLnRvLnNhdmUg77yaIOmcgOimgeiiq+iusOW9leeahOWPguaVsOWQjeWQkemHjw0KDQptb2RlbC5maWxlIO+8miBtb2RlbCDmlofku7YudHh0DQoNCm4uY2hhaW5zIDog6buY6K6kM+adoQ0KDQpuLml0ZXIg77ya5q+P5p2h6ZO+55qE6L+t5Luj5qyh5pWw77yM6buY6K6kMjAwMA0KDQpuLnRoaW4g77yaIFRoaW5uaW5nIHJhdGUuIOato+aVtOaVsO+8jOm7mOiupOaYrzHvvIwNCg0Kc2F2ZUV4ZWMg77ya5L2/55SoYmFzZW5hbWUo5qih5Z6LLmZpbGUp5L+d5a2YT3BlbkJVR1PmiafooYznmoTph43mlrDlkK/liqjmmKDlg4/jgIINCg0KcmVzdGFydCDvvJrmiafooYzku47kuIrmrKHmiafooYznmoTmnIDlkI7nirbmgIHmgaLlpI3vvIzlrZjlgqjlnKjlt6XkvZznm67lvZXkuK3nmoQuYnVn5paH5Lu25Lit44CCDQoNCmRlYnVnIO+8miDpu5jorqRGQUxTRSzmraPlnKjov5DooYzooYzml7ZPcGVuYnVncyDpobXpnaLlhbPpl60NCg0KRElDIO+8muiuoeeul2RldmlhbmNlLO+8jHBE77yM5ZKMRElD44CCDQoNCmRpZ2l0cyDvvJrmnInmlYjlsI/mlbDkvY3mlbANCg0KY29kYVBrZyDvvJpGQUxTRSDov5Tlm54gYnVnc+Wvueixoe+8jOWQpuWImei+k+WHuu+8jOeUqGNvZGEg5YyFIHJlYWQuYnVncyDor7vlj5bvvIwNCg0KT3BlbkJVR1MucGdtIO+8mumAmuWQkU9wZW5CVUdT5Y+v5omn6KGM56iL5bqP55qE5a6M5pW06Lev5b6E44CCDQoNCndvcmtpbmcuZGlyZWN0b3J577yaT3BlbkJVR1PnmoTovpPlhaXlkozovpPlh7rlsIblrZjlgqjlnKjmraTnm67lvZXkuK07DQoNCmNsZWFyV0Qg77ya5piv5ZCm6L+Z5Lqb5paH5Lu255qE4oCcZGF0YS50eHTigJ3jgIHigJxpbml0KDE6bi5jaGFpbnMpLiB0eHTigJ0sImxvZy5vZGPigJ3jgIHigJxjb2RhSW5kZXgudHh04oCd5ZKM4oCcY29kYVsxOm5jaGFpbl0udHh04oCd57uT5p2f5pe25Yig6Zmk44CCDQoNCmJ1Z3Muc2VlZCDvvJpPcGVuQlVHU+maj+acuuenjeWtkO+8jDEtMTTmlbTmlbANCg0Kc3VtbWFyeS5vbmx5IO+8miBUVVJFICzku4Xlr7npnZ7luLjlv6vpgJ/nmoTliIbmnpDnu5nlh7rkuobkuIDkuKrlj4LmlbDmpoLopoENCg0Kc2F2ZS5oaXN0b3J5IDogVFVSRSzmnIDlkI7nlLvlh7p0cmFjZQ0KDQpgYGB7cn0NCiMgQW4gZXhhbXBsZSBtb2RlbCBmaWxlIGlzIGdpdmVuIGluOg0KbW9kZWwuZmlsZSA8LSBzeXN0ZW0uZmlsZShwYWNrYWdlPSJSMk9wZW5CVUdTIiwgIm1vZGVsIiwgInNjaG9vbHMudHh0IikNCiMgTGV0J3MgdGFrZSBhIGxvb2s6DQpwcmludChtb2RlbC5maWxlKQ0KZmlsZS5zaG93KG1vZGVsLmZpbGUpDQpgYGANCiAgIG1vZGVsIHsNCiAgICAgICBmb3IgKGogaW4gMTpKKXsNCiAgICAgICAgIHlbal0gfiBkbm9ybSAodGhldGFbal0sIHRhdS55W2pdKQ0KICAgICAgICAgdGhldGFbal0gfiBkbm9ybSAobXUudGhldGEsIHRhdS50aGV0YSkNCiAgICAgICAgIHRhdS55W2pdIDwtIHBvdyhzaWdtYS55W2pdLCAtMikNCiAgICAgICB9DQogICAgICAgbXUudGhldGEgfiBkbm9ybSAoMC4wLCAxLjBFLTYpDQogICAgICAgdGF1LnRoZXRhIDwtIHBvdyhzaWdtYS50aGV0YSwgLTIpDQogICAgICAgc2lnbWEudGhldGEgfiBkdW5pZiAoMCwgMTAwMCkNCiAgICAgfSANCiAgICAgDQpgYGB7cn0NCmRhdGEoc2Nob29scykNCnNjaG9vbHMNCmBgYA0KYGBge3J9DQpKIDwtIG5yb3coc2Nob29scykNCnkgPC0gc2Nob29scyRlc3RpbWF0ZQ0Kc2lnbWEueSA8LSBzY2hvb2xzJHNkDQpkYXRhIDwtIGxpc3QgKCJKIiwgInkiLCAic2lnbWEueSIpDQpkYXRhDQpgYGANCmBgYHtyfQ0KaW5pdHMgPC0gZnVuY3Rpb24oKXsNCiAgICAgIGxpc3QodGhldGE9cm5vcm0oSiwgMCwgMTAwKSwgbXUudGhldGE9cm5vcm0oMSwgMCwgMTAwKSxzaWdtYS50aGV0YT1ydW5pZigxLCAwLCAxMDApKQ0KfQ0KcGFyYW1ldGVycyA8LSBjKCJ0aGV0YSIsICJtdS50aGV0YSIsICJzaWdtYS50aGV0YSIpDQpgYGANCmBgYHtyfQ0Kc2Nob29scy5zaW0gPC0gYnVncyhkYXRhLCBpbml0cywgcGFyYW1ldGVycywgbW9kZWwuZmlsZSwNCm4uY2hhaW5zPTMsIG4uaXRlcj01MDAwKQ0KcHJpbnQoc2Nob29scy5zaW0pDQpgYGANCmBgYHtyfQ0KcGxvdChzY2hvb2xzLnNpbSkNCmBgYA0KDQojIyBidWdzLmRhdGEgICAg55Sf5oiQ6L6T5YWl5paH5Lu2DQoNCmJ1Z3MuZGF0YShkYXRhLCBkaXIgPSBnZXR3ZCgpLCBkaWdpdHMgPSA1LCBkYXRhLmZpbGUgPSAiZGF0YS50eHQiKQ0KDQojIyBidWdzLmluaXRzICAg55Sf5oiQ5Yid5aeL5YC85paH5Lu2DQoNCmJ1Z3MuaW5pdHMoaW5pdHMsIG4uY2hhaW5zLCBkaWdpdHMsDQogICAgaW5pdHMuZmlsZXMgPSBwYXN0ZSgiaW5pdHMiLCAxOm4uY2hhaW5zLCAiLnR4dCIsIHNlcCA9ICIiKSkNCiAgICANCiMjIGJ1Z3MubG9nICAg6K+75Y+WbG9n5paH5Lu277yIc3VtbWFyeSBzdGF0aXN0aWNzIGFuZCBESUMgaW5mb3JtYXRpb27vvIkNCg0KYnVncy5sb2coZmlsZSkNCg0KIyMgcGxvdC5idWdzICDnlLtidWdz5a+56LGhDQoNCg0KcGxvdCh4LCBkaXNwbGF5LnBhcmFsbGVsID0gRkFMU0UsIC4uLikNCg0KZGlzcGxheS5wYXJhbGxlbCDvvJrlnKjmkZjopoHlm77nmoTkuKTpg6jliIbkuK3mmL7npLrlubPooYznmoTpl7TpmpQNCg0KIyMgcHJpbnQuYnVncyDovpPlh7pidWdz5a+56LGhDQoNCnByaW50KHgsIGRpZ2l0cy5zdW1tYXJ5ID0gMSwgLi4uKQ0KDQpkaWdpdHMuc3VtbWFyee+8muWbm+iIjeS6lOWFpeeahOS9jeaVsA0KDQojIyByZWFkLmJ1Z3MgIA0KDQror7tNYXJrb3bpk77okpnnibnljaHnvZfovpPlh7rnmoRDT0RB5qC85byP44CC5bm26L+U5Zue5LiA5Liq57G7bWNtYy5saXN05a+56LGh44CC5L2/55SoY29kYeWMhei/m+ihjOi/m+S4gOatpeeahOi+k+WHuuWIhuaekOWIl+ihqOOAgg0KDQpyZWFkLmJ1Z3MoY29kYWZpbGVzLCAuLi4pDQoNCiMjIHZhbGlkYXRlSW5zdGFsbE9wZW5CVUdTIOavlOi+g1LlkoxvcGVuYnVnc+i9r+S7tui/kOihjOe7k+aenA0KDQojIyB3cml0ZS5tb2RlbCAg6L2s5YyWUiBmdW5jdGlvbuWIm+W7uuaooeWei+aWh+S7tg0KDQpgYGB7cn0NCnNjaG9vbHNtb2RlbCA8LSBmdW5jdGlvbigpew0KICAgICBmb3IgKGogaW4gMTpKKXsNCiAgICAgeVtqXSB+IGRub3JtICh0aGV0YVtqXSwgdGF1Lnlbal0pDQogICAgIHRoZXRhW2pdIH4gZG5vcm0gKG11LnRoZXRhLCB0YXUudGhldGEpDQogICAgIHRhdS55W2pdIDwtIHBvdyhzaWdtYS55W2pdLCAtMikNCn0NCiAgICAgbXUudGhldGEgfiBkbm9ybSAoMC4wLCAxLjBFLTYpDQogICAgIHRhdS50aGV0YSA8LSBwb3coc2lnbWEudGhldGEsIC0yKQ0KICAgICBzaWdtYS50aGV0YSB+IGR1bmlmICgwLCAxMDAwKQ0KfQ0KIyMgc29tZSB0ZW1wb3JhcnkgZmlsZW5hbWU6DQpmaWxlbmFtZSA8LSBmaWxlLnBhdGgodGVtcGRpcigpLCAic2Nob29sc21vZGVsLnR4dCIpDQojIyB3cml0ZSBtb2RlbCBmaWxlOg0Kd3JpdGUubW9kZWwoc2Nob29sc21vZGVsLCBmaWxlbmFtZSkNCiMjIGFuZCBsZXQncyB0YWtlIGEgbG9vazoNCmZpbGUuc2hvdyhmaWxlbmFtZSkNCmBgYA0KDQo=





thead>tr>th {
border: none;
border-bottom: 2px solid #dddddd;
}

.kable-table table>thead {
background-color: #fff;
}
-->