C++11转化double为string是一件很容易的事情。
方法:
1:使用C中的sprintf函数,这里就不说了。
2:使用std::ostringstream。这个与std::cout是一样的。这个在C++11以前就已经支持了的。这个得出的结果与使用std::cout的结果是一样的。
3:从C++11开始,标准库提供了std::to_string辅助函数转化各类型为一个字符串。
std::ostringstream和std::to_string
但是std::ostringstream和std::to_string使用的结果就有些很奇怪的差异了。主要有:
1:std::string得到的结果始终是小数位必然是6!
2:默认情况下,std::ostringstream对double使用的是6位精度。这里精度值的是整数位和小数位个数和。但是精度是可以设置的。这里统一谈论默认的情况。
也就是说,如果参数精度超过6位的话,那么会将数值四舍五入,然后丢弃多余的位数!
具体来说是这样的:
1:如果整数位不足6位,而整体精度超过了6,那么小数位四舍五入,然后截断多余的位数。
2:如果是整数位超过了6,那么舍弃小数位,然后按照科学计数法保存。
比如:
序号 | double原值 | std::ostringstream结果 |
1 | 1.0000000000001 | 1 |
2 | 0.12345678 | 0.123457 |
3 | 123456789.0000000000001 | 1.23457e+08 |
4 | 123456789.1234567 | 1.23457e+08 |
5 | 0.0000000000001 | 1e-13 |
下面我们详细比较std::ostringstream和std::to_string使用的结果的差异。
这里是详细的测试代码,请注意,这里必须是C++11及以上版本!
#include <string>
#include <cassert>
#include <iostream>
#include <sstream> std::string DoubleToStringByStdToString(double value)
{ const std::string& new_val = std::to_string(value);
return new_val;
}
▫
std::string DoubleToStringByStringStream(double value)
{
std::ostringstream stream;
stream << value;
return stream.str();
}
▫
void TestDoubleToStringByStdToString(const double value, const std::string& origin, const std::string& expect_str)
{
const std::string& val = DoubleToStringByStdToString(value);
std::cout << __FUNCTION__ << " --> original:" << origin
<< ", std::cout:" << value
<< ", std::to_string:" << val<< std::endl;
▫
assert( val == expect_str);
}
▫
void TestDoubleToStringByStringStream(const double value, const std::string& origin, const std::string& expect_str)
{
const std::string& val = DoubleToStringByStringStream(value);
std::cout << __FUNCTION__ << " --> original:" << origin
<< ", std::cout:" << value
<< ", std::stringstream:" << val<< std::endl;
▫
assert( val == expect_str);
} int main(int argc, char* argv[])
{
TestDoubleToStringByStdToString(, "", "0.000000");
TestDoubleToStringByStringStream(, "", ""); TestDoubleToStringByStdToString(., ".0", "0.000000");
TestDoubleToStringByStringStream(., ".0", ""); TestDoubleToStringByStdToString(0.0, "0.0", "0.000000");
TestDoubleToStringByStringStream(0.0, "0.0", ""); TestDoubleToStringByStdToString(1.0, "1.0", "1.000000");
TestDoubleToStringByStringStream(1.0, "1.0", ""); TestDoubleToStringByStdToString(1.0000008, "1.0000008", "1.000001");
TestDoubleToStringByStringStream(1.0000008, "1.0000008", ""); TestDoubleToStringByStdToString(1.0000000000001,"1.0000000000001", "1.000000");
TestDoubleToStringByStringStream(1.0000000000001,"1.0000000000001", ""); TestDoubleToStringByStdToString(0.0000000000001,"0.0000000000001", "0.000000");
TestDoubleToStringByStringStream(0.0000000000001,"0.0000000000001", "1e-13"); TestDoubleToStringByStdToString(0.12345678,"0.12345678", "0.123457");
TestDoubleToStringByStringStream(0.12345678,"0.12345678", "0.123457"); TestDoubleToStringByStdToString(100000000000.0000000000001,"100000000000.0000000000001", "100000000000.000000");
TestDoubleToStringByStringStream(100000000000.0000000000001,"100000000000.0000000000001", "1e+11"); TestDoubleToStringByStdToString(1e+,"1e+11", "100000000000.000000");
TestDoubleToStringByStringStream(1e+,"1e+11", "1e+11"); TestDoubleToStringByStdToString(123456.0000000000001, "123456.0000000000001", "123456.000000");
TestDoubleToStringByStringStream(123456.0000000000001, "123456.0000000000001", ""); TestDoubleToStringByStdToString(123456789.1234567,"123456789.1234567", "123456789.123457");
TestDoubleToStringByStringStream(123456789.1234567,"123456789.1234567", "1.23457e+08"); TestDoubleToStringByStdToString(123456789.0000000000001,"123456789.0000000000001", "123456789.000000");
TestDoubleToStringByStringStream(123456789.0000000000001,"123456789.0000000000001", "1.23457e+08"); return ;
}
我们这里将结果整理出来如下表
序号 | double原值 | std::cout | std::ostringstream结果 | std::to_string()结果 |
1 | 0 | 0 | 0 | 0.000000 |
2 | .0 | 0 | 0 | 0.000000 |
3 | 0.0 | 0 | 0 | 0.000000 |
4 | 1.0 | 1 | 1 | 1.000000 |
5 | 1.0000008 | 1 | 1 | 1.000001 |
6 | 1.0000000000001 | 1 | 1 | 1.000000 |
7 | 0.0000000000001 | 1e-13 | 1e-13 | 0.000000 |
8 | 0.12345678 | 0.123457 | 0.123457 | 0.123457 |
9 | 100000000000.0000000000001 | 1e+11 | 1e+11 | 100000000000.000000 |
10 | 1e+11 | 1e+11 | 1e+11 | 100000000000.000000 |
11 | 123456.0000000000001 | 123456 | 123456 | 123456.000000 |
12 | 123456789.1234567 | 1.23457e+08 | 1.23457e+08 | 123456789.123457 |
13 | 123456789.0000000000001 | 1.23457e+08 | 1.23457e+08 | 123456789.000000 |
从上面的结果我们还可以发现一个关于std::to_string的特点
如果传入的double本身是科学记数法,to_string仍然可以执行转化,且得出的结果与该科学技术法表述的值转化的结果是一样的!
总结
虽然C++对关转化double为string提供的方法很多,但是的得出的结果不一样。所以在使用时应该统一方法,并且格外小心,如果是在对double很敏感的行业,那么应该对该操作封装,并提供足够的控制参数。
一种可参考的实现
从上面我们可以看出使用ostringstream或者to_string的方法,要么存在精度显示问题要么调整为科学计数法显示。这些都不是我们想要的。
所以我们可以使用ostringstream封装一个辅助函数,可以控制精度也可以控制科学计数法显示。
精度
ostringstream是可以控制精度的,函数原型如下:
std::ios_base::precision
第一版
std::string DoubleToString(const double value, unsigned int precision)
{
std::ostringstream out;
if (precision > )
out.precision(precision); out << value;
return out.str();
} int main(int argc, char* argv[])
{
std::cout << DoubleToString(., ) << std::endl;
std::cout << DoubleToString(0.0, ) << std::endl;
std::cout << DoubleToString(., ) << std::endl;
std::cout << DoubleToString(1.0, ) << std::endl;
std::cout << DoubleToString(, ) << std::endl;
std::cout << DoubleToString(0.12345, ) << std::endl;
std::cout << DoubleToString(0.12345678, ) << std::endl;
std::cout << DoubleToString(0.12345678, ) << std::endl;
std::cout << DoubleToString(0.12345678, ) << std::endl;
std::cout << DoubleToString(0.12345678, ) << std::endl;
return ;
}
这是测试结果的输出:
0
0
0
1
11234
0.12345
0.12345678
0.12345678
0.12345678
0.123457
第二版
多数情况下我们更加关注的是小数点后的几位数,所以我们调整参数控制小数点后位数。
#include <limits>
std::string DoubleToString(const double value, unsigned int precisionAfterPoint)
{
std::ostringstream out;
// 清除默认精度
out.precision(std::numeric_limits<double>::digits10);
out << value; std::string res = std::move(out.str());
auto pos = res.find('.');
if (pos == std::string::npos)
return res; auto splitLen = pos + + precisionAfterPoint;
if (res.size() <= splitLen)
return res; return res.substr(, splitLen);
} int main(int argc, char* argv[])
{
std::cout << DoubleToString(., ) << std::endl;
std::cout << DoubleToString(0.0, ) << std::endl;
std::cout << DoubleToString(., ) << std::endl;
std::cout << DoubleToString(1.0, ) << std::endl;
std::cout << DoubleToString(, ) << std::endl;
std::cout << DoubleToString(12345.12345678, ) << std::endl;
std::cout << DoubleToString(12345.12345678, ) << std::endl;
std::cout << DoubleToString(12345.12345678, ) << std::endl;
std::cout << DoubleToString(12345.12345678, ) << std::endl;
std::cout << DoubleToString(12345.12345678, ) << std::endl;
std::cout << DoubleToString(12345.00000001, ) << std::endl;
std::cout << DoubleToString(12345.00000001, ) << std::endl;
std::cout << DoubleToString(12345.00000001, ) << std::endl;
return ;
}
这是测试结果的输出:
0
0
0
1
11234
12345.12345678
12345.12345678
12345.1234567
12345.12345678
12345.123456
12345.0000000
12345.00000001
12345.000000
第三版
更进一步的,我们一般默认情况下小数点后是是6位小数的。所以我们可以设置默认参数:
#include <limits>
std::string DoubleToString(const double value, unsigned int precisionAfterPoint = )
{
std::ostringstream out;
// 清除默认精度
out.precision(std::numeric_limits<double>::digits10);
out << value; std::string res = std::move(out.str());
auto pos = res.find('.');
if (pos == std::string::npos)
return res; auto splitLen = pos + + precisionAfterPoint;
if (res.size() <= splitLen)
return res; return res.substr(, splitLen);
}
第四版
1:实际上第三版的实现存在一个BUG,即设置默认小数位后没有执行四舍五入!
2:性能。这个实现性能如何,是不是存在更佳的实现呢?
3:处理完成后,如果小数位全是0,该怎么处理?
请读者自己去研究解决。