题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=1576
题目:
Problem Description
要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1)。
Input
数据的第一行是一个T,表示有T组数据。
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。
Output
对应每组数据输出(A/B)%9973。
Sample Input
2
1000 53
87 123456789
Sample Output
7922
6060
/*
问题
给出n(0 <= n < 9973)和B(1 <= B <= 10^9),计算(A/B)%9973
其中n=A%9973,A必能被B整除,且gcd(B,9973) = 1 解题思路
设X=(A/B)%9973,则A/B=K*9973+X(K为正整数)
即A=K*9973*B+X*B 又n=A%9973,则A=p*9973+n 结合两式可得 p*9973+n=K*9973*B+X*B
移项可得 p*9973-K*9973*B=X*B-n
即9973*(p-K*B)=X*B-n
显然左边对9973取余等于0,那么0=(X*B-n)%9973
此时直接枚举X取值即可,另外注意到X*B可能对超出int范围,需要用到同余运算,当然直接将其转换为long long类型也可。
(a-b)%n=((a%n)-(b%n)+n)%n
(a*b)%n=(a%n)*(b%n)%n
故(x*B-n)%9973=( ((X%9973)*(B%9973)%9973) -(n%9973)+9973 )%9973
*/ #include<cstdio> int main()
{
int t,n,X;
long long B;
scanf("%d",&t);
while(t--){
scanf("%d%lld",&n,&B);
for(X=;;X++){
if((((X%)*(B%)%) - (n%)+)% == ){
printf("%d\n",X);
break;
}
}
}
return ;
}