Tree

时间:2022-02-17 07:50:30

//Header.h

#ifndef _HEAD_
#define _HEAD_ #include <queue>
#include <iostream>
using namespace std; typedef char TElemType;
typedef int Status;
#define OK 0
#define ERROR -2
#define OverFlow -1 //普通二叉树
typedef struct BiTNode
{
TElemType data;
struct BiTNode *lchild, *rchild;
} BiTNode, *BiTree; //线索二叉树
typedef enum {Link, Thread} PointerTag; typedef struct BiThrNode
{
TElemType data;
struct BiThrNode *lchild, *rchild;
PointerTag LTag, RTag;
} BiThrNode, *BiThrTree; //仅为普通二叉树
void CreateBiTree(BiTree &T);
void PreOrderTraverse(BiTree T);
void LevelTraverse(BiTree T); //线索二叉树
void CreateBiThrTree(BiThrTree &T);
Status InOrderThread_Head(BiThrTree &head, BiThrTree &T);
Status InOrderTraverse_Thr(BiThrTree T); #endif

//Functions.cpp

#include "Header.h"

//因为BiTree是一个结构体,所以这里必须用“引用&”,否则将会新建一个空的BiTree,导致在创建二叉树时,创建失败(我们指定的BiTree为空);
//进而导致后面的遍历直接退出(因为传进去的BiTree不管是否为“引用&”都为空);
//另外只要创建的树正确,那么在遍历的时候不论是否“引用&”都可以得到正确的遍历顺序 //创建二叉树:过程理解为先序
void CreateBiTree(BiTree &T)
{
TElemType ch;
cin >> ch;
if (ch == '#')
T = NULL;
else
{
T = (BiTree)malloc(sizeof(BiTNode));
if (T == NULL)
{
cout << "Create BinaryTree failed!";
exit(OverFlow);
}
T->data = ch;
CreateBiTree(T->lchild);
CreateBiTree(T->rchild);
}
} //先序遍历
void PreOrderTraverse(BiTree T)
{
if (T == NULL)
return;
cout << T->data;
PreOrderTraverse(T->lchild);
PreOrderTraverse(T->rchild);
} //深度优先遍历 //广度优先遍历 //层次遍历
void LevelTraverse(BiTree T)
{
BiTree temp;
queue<BiTree>q;
q.push(T);
do
{
temp = q.front();
cout << temp->data;
q.pop();
if (temp->lchild != NULL)
{
q.push(temp->lchild);
}
if (temp->rchild != NULL)
{
q.push(temp->rchild);
}
} while (!q.empty());
} //前面是二叉树,下面是线索二叉树
BiThrTree pre; void CreateBiThrTree(BiThrTree &T)
{
TElemType ch;
cin >> ch;
if (ch == '#')
T = NULL;
else
{
T = (BiThrTree)malloc(sizeof(BiThrNode));
if (T == NULL)
{
cout << "Create BinaryTree failed!";
exit(OverFlow);
}
T->data = ch;
CreateBiThrTree(T->lchild);
CreateBiThrTree(T->rchild);
}
} void SetPointerTag(BiThrTree &p) //实际上只需要设置初始值就行
{
if (p)
{
p->LTag = Link;
p->RTag = Link;
SetPointerTag(p->lchild);
SetPointerTag(p->rchild);
}
}
void InThreading(BiThrTree &p) //p:present
{
if (p)
{
InThreading(p->lchild);
//两个if都是线索结点
if (p->lchild == NULL) //这里千万不要写错,要看清楚:这里是没有左孩子,而不是有左孩子
{
p->LTag = Thread;
p->lchild = pre;
}
if (pre->rchild == NULL) //前驱没有右孩子
{
pre->RTag = Thread;
pre->rchild = p;
}
pre = p;
InThreading(p->rchild);
}
} //建立头结点,中序线索二叉树本来的其余结点
Status InOrderThread_Head(BiThrTree &head, BiThrTree &T)
{
if (head == NULL)
{
return ERROR;
} head->rchild = head;
head->RTag = Link; if (T == NULL) //如果为NULL
{
head->lchild = head;
head->LTag = Link;
}
else
{
pre = head;
head->lchild = T; //第一步
head->LTag = Link;
SetPointerTag(T);
InThreading(T); //找到最后一个结点
pre->rchild = head; //第四步
pre->RTag = Thread;
head->rchild = pre; //第二步
}
return OK;
} Status InOrderTraverse_Thr(BiThrTree T)
{
BiThrTree p;
p = T->lchild;
while (p != T)
{
while (p->LTag == Link)
p = p->lchild;
cout << p->data;
while (p->RTag == Thread && p->rchild != T)
{
p = p->rchild;
cout << p->data;
}
p = p->rchild;
}
return OK;
}

//Main.cpp

#include "Header.h"

int main()
{
int choice;
cout << "1:普通二叉树" << endl << "2:线索二叉树" << endl;
cin >> choice;
switch (choice)
{
case :
BiTree binaryTree;
CreateBiTree(binaryTree);
PreOrderTraverse(binaryTree);
cout << endl;
LevelTraverse(binaryTree);
cout << endl;
break;
case :
//必须用一个新的函数,新建一个树,因为数据结构已被改变——>然后建立头节点(就像链表),
//并随即线索化——>像链表一样遍历(相对于普通树的遍历,减少了递归的堆栈导致的返回次数)
BiThrTree threadBinaryTree;
CreateBiThrTree(threadBinaryTree);
BiThrTree head = (BiThrTree)malloc(sizeof(BiThrNode));
InOrderThread_Head(head, threadBinaryTree);
InOrderTraverse_Thr(head);
cout << endl;
break;
}
return ;
}