CAFFE源码学习笔记之softmax_layer

时间:2023-01-31 04:11:28

一、前言
在全连接层之后,接着就是softmax层。softmax已经介绍过,是表征分类是该类的概率的大小。具体原理见logistic回归与softmax
所以,softmax layer就是将线性预测值转化为类别概率。由于该层没有参数,所以只需要计算向后传播的导数就可以了。而softmax_loss层则是在输出概率的基础上,用负log函数计算其loss。也就是说,caffe将softmax的归一化求概率和目标函数分成了两个部分。

二、源码分析
1、成员变量
为什么设置outer_num_和inner_num_?
inner_num_实际该层输入的图像的尺寸,由于正常网络下,其输入为n*m*1*1,所以inner_num实际就是1 。

  int outer_num_;//外层个数,即batch_size
int inner_num_;//内层个数,默认为1,应该是输入的图片的尺寸
int softmax_axis_;//默认都是1
/// 求和的缓存
Blob<Dtype> sum_multiplier_;
/// 输出结果的缓存
Blob<Dtype> scale_;
};

2、layersetup函数
因为该层没有参数,所以没有自己实现,直接使用基类Layer的实现。
3、reshape函数
经过全连接后,现在输入为input_num*output_num的矩阵

template <typename Dtype>
void SoftmaxLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
softmax_axis_ =
bottom[0]->CanonicalAxisIndex(this->layer_param_.softmax_param().axis());//axis:default = 1
top[0]->ReshapeLike(*bottom[0]);//input_num*output_num
vector<int> mult_dims(1, bottom[0]->shape(softmax_axis_));//(output_num)
sum_multiplier_.Reshape(mult_dims);//(output_num)
Dtype* multiplier_data = sum_multiplier_.mutable_cpu_data();
caffe_set(sum_multiplier_.count(), Dtype(1), multiplier_data);
outer_num_ = bottom[0]->count(0, softmax_axis_);//outer_num_ =input_num
inner_num_ = bottom[0]->count(softmax_axis_ + 1);//inner_num_=count = 1;
vector<int> scale_dims = bottom[0]->shape();
scale_dims[softmax_axis_] = 1;
scale_.Reshape(scale_dims);//最后结果为64*1的向量
}

4、前向计算

前向计算公式: f(zk)=ezkmn10ezim
其中 m=max(zi)

指数分式中指数内上下同时减m,结果不变。这主要是为了解决数值稳定问题——在反向传播的时候,输出层先求得 La=lossay ,
由于浮点数是有精度限制的,每多一次运算就会多累积一定的误差,如果碰巧这次预测正确的类别所得到的概率非常小(接近零)的话,也就是说 ay 特别小,得到的 La 会特别大,结果会有 overflow 的危险。

template <typename Dtype>
void SoftmaxLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const Dtype* bottom_data = bottom[0]->cpu_data();
Dtype* top_data = top[0]->mutable_cpu_data();
Dtype* scale_data = scale_.mutable_cpu_data();
int channels = bottom[0]->shape(softmax_axis_);
int dim = bottom[0]->count() / outer_num_;
// 从bottom 复制到 top,以下操作都在top上进行
caffe_copy(bottom[0]->count(), bottom_data, top_data);
// We need to subtract the max to avoid numerical issues, compute the exp,
// and then normalize.
for (int i = 0; i < outer_num_; ++i) {
// initialize scale_data to the first plane
caffe_copy(inner_num_, bottom_data + i * dim, scale_data);//将输入复制到sacle_data中缓存
for (int j = 0; j < channels; j++) {//针对每一个类别
for (int k = 0; k < inner_num_; k++) {//针对每一张输入的图片,按照每个像素点进行计算
//求最大值m=max(z_i)(存放在scale_data)
scale_data[k] = std::max(scale_data[k],
bottom_data[i * dim + j * inner_num_ + k]);
}
}
// z_k-m,归一化subtract the max
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels, inner_num_,
1, -1., sum_multiplier_.cpu_data(), scale_data, 1., top_data);
// 求指数
caffe_exp<Dtype>(dim, top_data, top_data);
// 向量求和
caffe_cpu_gemv<Dtype>(CblasTrans, channels, inner_num_, 1.,
top_data, sum_multiplier_.cpu_data(), 0., scale_data);
// 做除法,归一化成(0,1)内的概率
for (int j = 0; j < channels; j++) {
caffe_div(inner_num_, top_data, scale_data, top_data);
top_data += inner_num_;//地址移动到下一个图片,此处为+1.
}
}
}

5、后向计算

假设其损失函数为 L

反向传播就是对其求输入的导数:
LZ=LaaZ

其中, La 就是top_diff,实质就是损失,已经算出。 af(z) 。z为 bottom_data ,而a为 top_data

首先,求 aizk

因为前向计算有:

f(zi)=ezin10ezj

假设 n1=1 ,可得:

a1=ez1ez0+ez1

求导得:

a1z1=a1a1a1;
a1z0=a1a0;

由归纳法证明:

aizk=akakak,i=k;
aizk=akai,ik;

因此 Lzk=m0Laiaizk=Laaak+Lakak

综合可得:

LZ=Laaa+Laa=a(LaLaa)=top_data(top_difftop_difftop_data)

template <typename Dtype>
void SoftmaxLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down,
const vector<Blob<Dtype>*>& bottom) {
const Dtype* top_diff = top[0]->cpu_diff();
const Dtype* top_data = top[0]->cpu_data();
Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
Dtype* scale_data = scale_.mutable_cpu_data();
int channels = top[0]->shape(softmax_axis_);
int dim = top[0]->count() / outer_num_;
caffe_copy(top[0]->count(), top_diff, bottom_diff);
for (int i = 0; i < outer_num_; ++i) {
// 计算top_diff和top_data的点积,然后从bottom_diff中减去该值 top_diff*top_data
for (int k = 0; k < inner_num_; ++k) {
scale_data[k] = caffe_cpu_strided_dot<Dtype>(channels,
bottom_diff + i * dim + k, inner_num_,
top_data + i * dim + k, inner_num_);
}
// bottom_diff=top_diff-top_diff*top_data
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels, inner_num_, 1,
-1., sum_multiplier_.cpu_data(), scale_data, 1., bottom_diff + i * dim);
}
// top_data*(top_diff-top_diff*top_data)
caffe_mul(top[0]->count(), bottom_diff, top_data, bottom_diff);
}



三、softmax_loss_layer
1、成员变量

  /// 将预测映射到概率分布的softmax层指针
shared_ptr<Layer<Dtype> > softmax_layer_;
/// 存储输出概率
Blob<Dtype> prob_;
/// bottom vector holder used in call to the underlying SoftmaxLayer::Forward
vector<Blob<Dtype>*> softmax_bottom_vec_;
/// top vector holder used in call to the underlying SoftmaxLayer::Forward
vector<Blob<Dtype>*> softmax_top_vec_;
/// Whether to ignore instances with a certain label.
bool has_ignore_label_;
/// The label indicating that an instance should be ignored.
int ignore_label_;
/// How to normalize the output loss.
LossParameter_NormalizationMode normalization_;

int softmax_axis_, outer_num_, inner_num_;

2、layersetup函数

template <typename Dtype>
void SoftmaxWithLossLayer<Dtype>::LayerSetUp(
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
LossLayer<Dtype>::LayerSetUp(bottom, top);//调用LossLayer的setup初始化层参数
LayerParameter softmax_param(this->layer_param_);
softmax_param.set_type("Softmax");//设置层类型
softmax_layer_ = LayerRegistry<Dtype>::CreateLayer(softmax_param);//注册层
softmax_bottom_vec_.clear();
softmax_bottom_vec_.push_back(bottom[0]);//将存放输入的数据结构放入容器
softmax_top_vec_.clear();
softmax_top_vec_.push_back(&prob_);//将存放输出概率的数据结构放入容器
softmax_layer_->SetUp(softmax_bottom_vec_, softmax_top_vec_);//用输入输出初始化softmax层

has_ignore_label_ =
this->layer_param_.loss_param().has_ignore_label();
if (has_ignore_label_) {
ignore_label_ = this->layer_param_.loss_param().ignore_label();
}
if (!this->layer_param_.loss_param().has_normalization() &&
this->layer_param_.loss_param().has_normalize()) {//normalize有两种:一种是VALID,另一种是BATCH_SIZE
normalization_ = this->layer_param_.loss_param().normalize() ?
LossParameter_NormalizationMode_VALID :
LossParameter_NormalizationMode_BATCH_SIZE;
} else {
normalization_ = this->layer_param_.loss_param().normalization();
}
}

3、reshepe函数

template <typename Dtype>
void SoftmaxWithLossLayer<Dtype>::Reshape(
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
LossLayer<Dtype>::Reshape(bottom, top);
softmax_layer_->Reshape(softmax_bottom_vec_, softmax_top_vec_);
softmax_axis_ =
bottom[0]->CanonicalAxisIndex(this->layer_param_.softmax_param().axis());
//outer_num_ * inner_num_必须和bottom[1]->count()给定的lable数相同
//softmax前面是卷积层的时候,每个label就不是一个数,而是一个矩阵,对应着每个 feature map中每个像素值的分类
outer_num_ = bottom[0]->count(0, softmax_axis_);
inner_num_ = bottom[0]->count(softmax_axis_ + 1);
CHECK_EQ(outer_num_ * inner_num_, bottom[1]->count())
<< "Number of labels must match number of predictions; "
<< "e.g., if softmax axis == 1 and prediction shape is (N, C, H, W), "
<< "label count (number of labels) must be N*H*W, "
<< "with integer values in {0, 1, ..., C-1}.";
if (top.size() >= 2) {
// softmax output
top[1]->ReshapeLike(*bottom[0]);
}

4、归一化
归一化主要是为了数值稳定,避免出现overflow等情况。

template <typename Dtype>
Dtype SoftmaxWithLossLayer<Dtype>::get_normalizer(
LossParameter_NormalizationMode normalization_mode, int valid_count) {
Dtype normalizer;
switch (normalization_mode) {
case LossParameter_NormalizationMode_FULL:
normalizer = Dtype(outer_num_ * inner_num_);//表示所有的像素点都参与了loss计算
break;
case LossParameter_NormalizationMode_VALID:
if (valid_count == -1) {
normalizer = Dtype(outer_num_ * inner_num_);
} else {
normalizer = Dtype(valid_count);//有多少计算了loss,就归一化除去多少
}
break;
case LossParameter_NormalizationMode_BATCH_SIZE:
normalizer = Dtype(outer_num_);//表示所有的图像都参与计算loss
break;
case LossParameter_NormalizationMode_NONE:
normalizer = Dtype(1);//不归一化
break;
default:
LOG(FATAL) << "Unknown normalization mode: "
<< LossParameter_NormalizationMode_Name(normalization_mode);
}
// Some users will have no labels for some examples in order to 'turn off' a
// particular loss in a multi-task setup. The max prevents NaNs in that case.
return std::max(Dtype(1.0), normalizer);
}

5、前向计算

负log函数求损失

template <typename Dtype>
void SoftmaxWithLossLayer<Dtype>::Forward_cpu(
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
// The forward pass computes the softmax prob values.
softmax_layer_->Forward(softmax_bottom_vec_, softmax_top_vec_);//调用softmaxlayer的前向计算
const Dtype* prob_data = prob_.cpu_data();
const Dtype* label = bottom[1]->cpu_data();
int dim = prob_.count() / outer_num_;
int count = 0;
Dtype loss = 0;
for (int i = 0; i < outer_num_; ++i) {
for (int j = 0; j < inner_num_; j++) {
const int label_value = static_cast<int>(label[i * inner_num_ + j]);//从对应的实例中取出相对应的标签
if (has_ignore_label_ && label_value == ignore_label_) {
continue;
}
DCHECK_GE(label_value, 0);
DCHECK_LT(label_value, prob_.shape(softmax_axis_));
loss -= log(std::max(prob_data[i * dim + label_value * inner_num_ + j],
Dtype(FLT_MIN)));//计算损失函数
++count;
}
}
top[0]->mutable_cpu_data()[0] = loss / get_normalizer(normalization_, count);//归一化,中间有问题的是当有若干的实例不计算loss的时候,最终计算归一化的时候,需要除以真正计算了loss的实例个数
if (top.size() == 2) {
top[1]->ShareData(prob_);
}
}

6、反向计算

经过前向计算: f(zk)=ezkniezi
求其f负log函数: loss=logniezizk
对其输入求导: losszi={f(zk)1,f(zi),if z_i=z_kelse
代码就一句话:

 bottom_diff[i * dim + label_value * inner_num_ + j] -= 1;
template <typename Dtype>
void SoftmaxWithLossLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
if (propagate_down[1]) {
LOG(FATAL) << this->type()
<< " Layer cannot backpropagate to label inputs.";
}
if (propagate_down[0]) {
Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
const Dtype* prob_data = prob_.cpu_data();
caffe_copy(prob_.count(), prob_data, bottom_diff);
const Dtype* label = bottom[1]->cpu_data();
int dim = prob_.count() / outer_num_;
int count = 0;
for (int i = 0; i < outer_num_; ++i) {
for (int j = 0; j < inner_num_; ++j) {
const int label_value = static_cast<int>(label[i * inner_num_ + j]);
if (has_ignore_label_ && label_value == ignore_label_) {
for (int c = 0; c < bottom[0]->shape(softmax_axis_); ++c) {
bottom_diff[i * dim + c * inner_num_ + j] = 0;//默认情况下,j=0,inner_num_=1,如果分类有是个,dim=10,
}
} else {
bottom_diff[i * dim + label_value * inner_num_ + j] -= 1;
++count;
}
}
}
// Scale gradient
Dtype loss_weight = top[0]->cpu_diff()[0] /
get_normalizer(normalization_, count);//归一化
caffe_scal(prob_.count(), loss_weight, bottom_diff);//loss权重
}
}