poj 1845 Sumdiv(约数和,乘法逆元)

时间:2023-02-01 22:29:38

题目:

  求AB的正约数之和。

输入:

  A,B(0<=A,B<=5*107

输出:

  一个整数,AB的正约数之和 mod 9901。

思路:

  根据正整数唯一分解定理,若一个正整数表示为:A=p1^c* p2^c* ...... pm^cm 则其正约数之和可以表示为:S=(1+p1+p1^2+......p1^c1)*(1+p2+p2^2+......p2^c2)*......(1+pm+pm^2+......pm^cm)

那么AB就可以表示为:S'=(1+p1+p1^2+......p1^(c1*B))*(1+p2+p2^2+......p2^(c2*B))*......(1+pm+pm^2+......pm^(cm*B))

这样,我们发现每一项(以第一项为例)(1+p1+p1^2+......p1^(c1*B))是一个等比数列,根据求和公式易得:(p1^(c1*B+1)-1)/(p1-1)同理,后面的式子也是。那么接下来我们可以通过快速幂求解分子

部分。分母部分需要用到(p1-1)的乘法逆元。因为模数9901是质数,所以只要(p1-1)不是9901的倍数,那么它们就互质,根据费马小定理,乘法逆元就是(p1-2)。特别的,如果(p1-1)是9901

的倍数,那么就有(p1-1)|  9901,即:p1%9901=1,所以这一项就变成了:(1+1+1^2+……+1^(c1*B))%9901=(c1*B)+1 (mod 9901) 。具体代码如下:

#include<cstdio>
const int mod=;
typedef long long ll;
int a,b,ans=;
int factor[],fc[],cnt;
void div(int x)
{
for (int i=;i*i<=x;i++)
{
if (x%i==)
{
factor[++cnt]=i;
while (x%i==) x/=i,fc[cnt]++;
}
}
if (x>) factor[++cnt]=x,fc[cnt]=;
}
int ksm(int a,ll b)
{
int re=;
while (b)
{
if (b&) re=(1ll*re*a)%mod;
a=(1ll*a*a)%mod; b>>=;
}
return re;
}
int main()
{
scanf ("%d%d",&a,&b);
div(a);
for (int i=;i<=cnt;i++)
{
int fac=factor[i];
if ((fac-) % == )//特判分母是否是9901的倍数
{
ans = (ans%mod * (1ll*b*fc[i]+)%mod) % mod;
continue;
}
int fm=( ksm(fac,1ll*b*fc[i]+)-+mod )%mod;//分母
int fzny=( ksm(fac-,mod-) )%mod;//分子逆元
ans = (1ll*ans * fm%mod * fzny%mod)%mod;
}
printf("%d",ans);
return ;
}