任意门:http://poj.org/problem?id=1845、
Sumdiv
Time Limit: 1000MS |
Memory Limit: 30000K |
|
Total Submissions: 30268 |
Accepted: 7447 |
Description
Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).
Input
The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.
Output
The only line of the output will contain S modulo 9901.
Sample Input
2 3
Sample Output
15
Hint
2^3 = 8.
The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
15 modulo 9901 is 15 (that should be output).
The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
15 modulo 9901 is 15 (that should be output).
Source
题目概括:
给出 A 和 B ,求 AB 所有因子之和,答案 mod 9901;
解题思路:
可对 A 先进行素因子分解 A = p1a1 * p2a2 * p3a3 * ...... * pnan
即 AB = p1a1*B * p2a2*B * p3a3*B * ...... * pnan*B
那么 AB 所有因子之和 = (1 + P11 + P12 + P13 + ... + P1a1*B) * (1 + P21 + P22 + P23 + ... + P2a2*B) * ......* (1 + Pn1 + Pn2 + Pn3 + ... + Pnan*B) ;
对于 (1 + P1 + P2 + P3 + ... + Pa1*B) 我们可以
①二分求和 (47 ms)
AC code:
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#define INF 0x3f3f3f3f
#define LL long long
using namespace std;
const LL MOD = ;
const int MAXN = 1e4+;
LL p[MAXN];
bool isprime[MAXN];
int cnt;
LL A, B; void init() //打表预处理素因子
{
cnt = ;
memset(isprime, , sizeof(isprime));
for(LL i = ; i < MAXN; i++){
if(isprime[i]){
p[cnt++] = i;
for(int j = ; j < cnt && p[j]*i < MAXN; j++)
isprime[p[j]*i] = false;
}
}
} LL qpow(LL x, LL n)
{
LL res = 1LL;
while(n){
if(n&) res = (res%MOD*x%MOD)%MOD;
x = (x%MOD*x%MOD)%MOD;
n>>=1LL;
}
return res;
} LL sum(LL x, LL n)
{
if(n == ) return ;
LL res = sum(x, (n-)/);
if(n&){
res = (res + res%MOD*qpow(x, (n+)/)%MOD)%MOD;
}
else{
res = (res + res%MOD*qpow(x, (n+)/)%MOD)%MOD;
res = (res + qpow(x, n))%MOD;
}
return res;
} int main()
{
LL ans = ;
scanf("%lld %lld", &A, &B);
init();
//printf("%d\n", cnt);
for(LL i = ; p[i]*p[i] <= A && i < cnt; i++){ //素因子分解
//printf("%lld\n ", p[i]);
if(A%p[i] == ){
LL num = ;
while(A%p[i] == ){
num++;
A/=p[i];
}
ans = ((ans%MOD*sum(p[i], num*B)%MOD)+MOD)%MOD;
}
}
if(A > ){
// puts("zjy");
ans = (ans%MOD*sum(A, B)%MOD+MOD)%MOD;
} printf("%lld\n", ans); return ;
}
②应用等比数列求和公式 ( 0ms )
因为要保证求模时的精度,所以要求逆元。
这里用的方法是一般情况都适用的 : A/B mod p = A mod (p*B) / B;
但是考虑乘法会爆int,所以自定义一个二分乘法。
AC code:
// 逆元 + 二分乘法
#include <cstdio>
#include <iostream>
#include <cmath>
#include <algorithm>
#include <cstring>
#define INF 0x3f3f3f3f
#define LL long long
using namespace std;
const int MAXN = 1e4+;
const LL mod = ;
int p[MAXN], cnt;
bool isp[MAXN];
LL A, B; void prime()
{
memset(isp, , sizeof(isp));
isp[] = isp[] = false;
for(int i = ; i < MAXN; i++){
if(isp[i]){
p[cnt++] = i;
for(int k = ; k < cnt && i*p[k] < MAXN; k++){
isp[i*p[k]] = false;
}
}
}
} LL mutil(LL x, LL y, LL MOD)
{
LL res = ;
while(y){
if(y&) res = (res+x)%MOD;
x = (x+x)%MOD;
y>>=1LL;
}
return res;
} LL q_pow(LL x, LL n, LL MOD)
{
LL res = 1LL;
while(n){
if(n&) res = mutil(res, x, MOD)%MOD;
x = mutil(x, x, MOD)%MOD;
n>>=1LL;
}
return res;
} int main()
{
LL num = ;
LL ans = ;
scanf("%lld %lld", &A, &B);
prime();
for(int i = ; p[i]*p[i] <= A; i++){
if(A%p[i] == ){
num = ;
while(A%p[i] == ){
A/=p[i];
num++;
}
LL m = mod*(p[i]-);
ans *= (q_pow(p[i], num*B+, m) + m-)/(p[i] - );
ans = ans%mod;
//ans += ((q_pow(p[i], num*B, mod*(p[i]-1))-p[i])/(p[i]-1))%mod;
}
} if(A != ){
// ans += ((q_pow(A, B, mod*(A-1))-A)/(A-1))%mod;
LL m = mod*(A-);
ans*=(q_pow(A, B+, m)+m-)/(A-);
ans = ans%mod;
} printf("%lld\n", ans); return ;
}