Luogu3220 HNOI2012 与非 数位DP

时间:2023-03-08 17:33:49

传送门

题意:给出$N$个范围在$[0,2^k-1]$的整数,定义位运算$NAND$为位运算$AND$的逆运算,求$[L,R]$中有多少数能成为若干个前面给出的整数、若干括号和$NAND$运算组成的表达式的结果(每一个数在一个表达式中可以出现多次)。


OI生涯第一道数位DP

可以使用$NAND$表示所有基本位运算(这个可以手玩出来qwq),那么$NAND$像基本位运算一样会有一个性质:如果所有给出的整数中第$i$位和第$j$位相同,那么最后的结果的第$i$位与第$j$位也一定相同,而不满足这个条件的位在一个确定了之后,另一位仍然可以同时取$0$或$1$(基于线性基的思想可以证明这个结论),那么我们可以预处理出所有互相影响的位,然后数位$DP$即可。

数位$DP$留在以后的专题??反正现在不想写,实在不懂看下面的code吧

 #include<bits/stdc++.h>
 #define ll long long
 //This code is written by Itst
 using namespace std;

 inline ll read(){
     ll a = ;
     ;
     char c = getchar();
     while(c != EOF && !isdigit(c)){
         if(c == '-')
             f = ;
         c = getchar();
     }
     while(c != EOF && isdigit(c)){
         a = (a << ) + (a << ) + (c ^ ');
         c = getchar();
     }
     return f ? -a : a;
 }

 ;
 ll num[MAXN] , K , N , p[];
 bool vis[MAXN];
 vector < ];

 inline ll poww(ll a , int b){
     ll times = ;
     while(b){
         )
             times = times * a;
         a = a * a;
         b >>= ;
     }
     return times;
 }

 ll dfs(int now , ll sum , ll limit){
      || !p[now])
         ;
     if(vis[now])
          , sum , limit);
     ll s = sum;
      ; i < influ[now].size() ; i++)
         s |= 1ll << influ[now][i];
     if(s <= limit)
          , s , limit) + poww( , p[now] - );
     else
          , sum , limit);
 }

 int main(){
 #ifdef LG
     freopen("3220.in" , "r" , stdin);
     //freopen("3220.out" , "w" , stdout);
 #endif
     N = read();
     K = read();
     ll L = read() , R = read();
      ; i <= N ; i++)
         num[i] = read();
      ; i >=  ; i--){
         if(vis[i])
             continue;
         influ[i].push_back(i);
          ; j >=  ; j--){
             if(vis[j])
                 continue;
             ;
              ; f && k <= N ; k++)
                 f = ((num[k] >> i) & ) == ((num[k] >> j) & );
             if(f){
                 vis[j] = ;
                 influ[i].push_back(j);
             }
         }
     }
      ; i < K ; i++)
         p[i] = (i ? p[i - ] : ) + !vis[i];
     printf( ,  , R) - (L ? dfs(K -  ,  , L - ) : ));
     ;
 }