Problem Description
这是一个简单的生存游戏,你控制一个机器人从一个棋盘的起始点(1,1)走到棋盘的终点(n,m)。游戏的规则描述如下: 1.机器人一开始在棋盘的起始点并有起始点所标有的能量。 2.机器人只能向右或者向下走,并且每走一步消耗一单位能量。 3.机器人不能在原地停留。 4.当机器人选择了一条可行路径后,当他走到这条路径的终点时,他将只有终点所标记的能量。
如上图,机器人一开始在(1,1)点,并拥有4单位能量,蓝色方块表示他所能到达的点,如果他在这次路径选择中选择的终点是(2,4)
点,当他到达(2,4)点时将拥有1单位的能量,并开始下一次路径选择,直到到达(6,6)点。 我们的问题是机器人有多少种方式从起点走到终点。这可能是一个很大的数,输出的结果对10000取模。

点,当他到达(2,4)点时将拥有1单位的能量,并开始下一次路径选择,直到到达(6,6)点。 我们的问题是机器人有多少种方式从起点走到终点。这可能是一个很大的数,输出的结果对10000取模。
Input
第一行输入一个整数T,表示数据的组数。 对于每一组数据第一行输入两个整数n,m(1 <= n,m <= 100)。表示棋盘的大小。接下来输入n行,每行m个整数e(0 <= e < 20)。
Output
对于每一组数据输出方式总数对10000取模的结果.
Sample Input
1
6 6
4 5 6 6 4 3
2 2 3 1 7 2
1 1 4 6 2 7
5 8 4 3 9 5
7 6 6 2 1 5
3 1 1 3 7 2
6 6
4 5 6 6 4 3
2 2 3 1 7 2
1 1 4 6 2 7
5 8 4 3 9 5
7 6 6 2 1 5
3 1 1 3 7 2
Sample Output
3948
方法一:当前的这个点可以到达其他点的方法数(直接4重循环)
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<bitset>
#include<map>
#include<vector>
#include<stdlib.h>
using namespace std;
#define ll long long
#define eps 1e-10
#define MOD 10000
#define inf 1e12
#define N 106
int n,m;
int mp[N][N];
int dp[N][N];
int main()
{
int t;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
scanf("%d",&mp[i][j]);
}
}
memset(dp,,sizeof(dp));
dp[][]=;
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
for(int k=i;(k<=n) && (k<=mp[i][j]+i);k++){
for(int w=j;(w<=m) && (w<=mp[i][j]+i+j-k);w++){
if((k==i) && (w==j))continue;
dp[k][w]+=dp[i][j];
dp[k][w]%=MOD;
}
}
}
}
printf("%d\n",dp[n][m]%MOD);
}
return ;
}
方法二:记忆化dp,标记dp[n][m]=1,然后从前往后记忆化dp,dfs
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<bitset>
#include<map>
#include<vector>
#include<stdlib.h>
using namespace std;
#define ll long long
#define eps 1e-10
#define MOD 10000
#define N 106
#define inf 1e12
int n,m;
int mp[N][N];
int dp[N][N];
bool judge(int x,int y){
if(x< || x>n || y< || y>m) return false;
return true;
}
int dfs(int x,int y){
if(dp[x][y]>=) return dp[x][y];
dp[x][y]=;
for(int i=;i<=mp[x][y];i++){
for(int j=;j<=mp[x][y]-i;j++){
if(judge(x+i,y+j)){
dp[x][y]=(dp[x][y]+dfs(x+i,y+j))%MOD;
}
}
}
return dp[x][y];
}
int main()
{
int t;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
scanf("%d",&mp[i][j]);
}
}
memset(dp,-,sizeof(dp));
dp[n][m]=;
printf("%d\n",dfs(,));
}
return ;
}