PAT甲1115 Counting Nodes in a BST【dfs】

时间:2023-03-08 15:41:57
1115 Counting Nodes in a BST (30 分)

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

  • The left subtree of a node contains only nodes with keys less than or equal to the node's key.
  • The right subtree of a node contains only nodes with keys greater than the node's key.
  • Both the left and right subtrees must also be binary search trees.

Insert a sequence of numbers into an initially empty binary search tree. Then you are supposed to count the total number of nodes in the lowest 2 levels of the resulting tree.

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N (≤1000) which is the size of the input sequence. Then given in the next line are the N integers in [−10001000] which are supposed to be inserted into an initially empty binary search tree.

Output Specification:

For each case, print in one line the numbers of nodes in the lowest 2 levels of the resulting tree in the format:

n1 + n2 = n

where n1 is the number of nodes in the lowest level, n2 is that of the level above, and n is the sum.

Sample Input:

9
25 30 42 16 20 20 35 -5 28

Sample Output:

2 + 4 = 6

题意:

给定n个数,建一棵二叉搜索树。问倒数第一层和倒数第二层分别有多少个节点。

思路:

先建树,然后dfs看每个节点的深度。

 #include <iostream>
#include <set>
#include <cmath>
#include <stdio.h>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <map>
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
#define inf 0x7f7f7f7f const int maxn = ;
int n, num[maxn], cnt[maxn], dep = -;
struct node{
int val;
int left = -, right = -;
int height;
}tree[maxn];
int tot; void add(node t, int rt)
{
if(t.val > tree[rt].val && tree[rt].right != -){
add(t, tree[rt].right);
}
else if(t.val > tree[rt].val){
tree[tot] = t;
tree[rt].right = tot++;
}
else if(tree[rt].left != -){
add(t, tree[rt].left);
}
else{
tree[tot] = t;
tree[rt].left = tot++;
}
} void dfs(int rt, int h)
{
tree[rt].height = h;
cnt[h]++;
dep = max(dep, h);
if(tree[rt].left != -){
dfs(tree[rt].left, h + );
}
if(tree[rt].right != -){
dfs(tree[rt].right, h + );
}
} int main()
{
scanf("%d", &n);
scanf("%d", &tree[tot++].val);
for(int i = ; i < n; i++){
node t;
scanf("%d", &t.val);
add(t, );
} //printf("!\n");
dfs(, );
int n1 = cnt[dep], n2 = cnt[dep - ];
printf("%d + %d = %d\n", n1, n2, n1 + n2);
return ;
}