题意:
给一颗树 每个节点有黑白2色
可以使一个色块同事变色,问最少的变色次数。
思路:
先缩点 把一样颜色的相邻点 缩成一个
然后新的树 刚好每一层是一个颜色。
最后的答案就是树的直径/2
不过我用的树上的dp,强行求了以每个点为根时树的深度
答案就是最小的深度-1
具体见代码:
const int maxn = + ;
int n;
int color[maxn];
int pa[maxn];
vector<int> G[maxn], G2[maxn];
void init()
{
scanf("%d", &n);
for (int i = ; i <= n; i++)
{
scanf("%d", color + i);
}
int u, v;
for (int i = ; i < n; i++)
{
scanf("%d%d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
}
} int find(int x)
{
return pa[x] != x ? pa[x] = find(pa[x]) : x;
} int fa[maxn];
void getTree()
{
queue<int> q;
q.push();
color[] = -;
while (!q.empty())
{
int u = q.front(); q.pop();
if (color[fa[u]] == color[u]) pa[u] = find(fa[u]);
else G2[fa[pa[u]]].push_back(u);
for (int i = ; i < G[u].size(); i++)
{
int v = G[u][i];
if (find(v) == find(fa[u])) continue;
fa[v] = pa[u];
q.push(v);
}
}
swap(G, G2);
} void pg()
{
cout << "Graph:" << endl;
for (int i = ; i <= n; i++)
{
for (int j = ; j < G[i].size(); j++)
{
cout << i << " " << G[i][j] << endl;
}
}
} int son1[maxn], son2[maxn]; //i节点的最大的儿子 和 次大的儿子的下标 int deep[maxn];
int deepFa[maxn];//i的父亲除了i以外的最深深度 int d[maxn];//以i为根时树的深度 d[i] = max(deep[i], deepFa[i] + 1) int dfs(int u) //得到每个节点最深儿子的深度
{
deep[u] = ;
for (int i = ; i < G[u].size(); i++)
{
int v = G[u][i];
fa[v] = u;
int tmp = dfs(v);
if (tmp >= deep[u])
{
son2[u] = son1[u];
son1[u] = v;
deep[u] = tmp;
}
else
{
if (tmp > deep[son2[u]]) son2[u] = v;
}
}
deep[u]++;
return deep[u];
} int bfs()
{
queue<int> q;
for (int i = ; i < G[].size(); i++) q.push(G[][i]);
int ans = d[] = deep[];
while (!q.empty())
{
int u = q.front(); q.pop();
if (son1[fa[u]] == u) deepFa[u] = deep[son2[fa[u]]] + ;
else deepFa[u] = deep[son1[fa[u]]] + ; deepFa[u] = max(deepFa[u], deepFa[fa[u]] + ); d[u] = max(deep[u], deepFa[u] + );
ans = min(ans, d[u]);
for (int i = ; i < G[u].size(); i++)
{
q.push(G[u][i]);
}
}
return ans - ;
} void solve()
{
for (int i = ; i <= n; i++) pa[i] = i;
getTree();
memset(fa, -, sizeof(fa));
for (int i = ; i <= n; i++) son1[i] = son2[i] = n + ;
dfs();
cout << bfs() << endl;
} int main()
{
init();
solve();
return ;
}