注意:本博客代码被黑心数据Hack,有空补回来
啊啊啊这道难题总算是做出来了,首先是帅比浮云的题解发出来一下:http://www.cnblogs.com/fuyun-boy/p/5922742.html
原题目地址:https://www.luogu.org/problem/show?pid=2832
题目背景
小X来到了山区,领略山林之乐。在他乐以忘忧之时,他突然发现,开学迫在眉睫
题目描述
山区有n座山。山之间有m条羊肠小道,每条连接两座山,只能单向通过,并会耗费小X一定时间。
小X现在在1号山,他的目的是n号山,因为那里有火车站。
然而小X的体力是有限的。他每通过一条羊肠小道,就会变得更疲劳,导致他通过任意一条羊肠小道的时间都增加1。
输入输出格式
输入格式:
第一行两个数,n,m
第2行到第m+1行,每行3个数A,B,C,表示A、B之间有一条羊肠小道,可以让小X花费C的时间从A移动到B
输出格式:
两行
第一行一个数T,表示小X需要的最短时间
第二行若干个数,用空格隔开,表示小X的移动路线
例:1 4 2 5表示:小X从1号山开始,移动到4号山,再到2号山,最后到5号山。
输入输出样例
5 8
2 4 2
5 2 1
1 2 1
4 3 2
1 3 3
4 5 2
1 5 8
3 5 3
7
1 3 5
说明
n<=10000, m<=200000
数据保证没有多条最短路径
【题解】
这道题就是最短路的变体,不过从起点到终点每多走一条边就要多加一点权值。
比如说原来的权值是6+7+9+3+5,之后的权值就是6+(7+1)+(9+2)+(3+3)+(5+4)了。
下面的这个是我写的代码。我的解决方法就是加上两个数组,一个是r,一个是tr。
d数组还是spfa一如既往的d数组,是除去这道题额外的条件的数组。
tr数组是补充数组(废话),d[i]+tr[i]表示从起点走到这个点的最小花费。
r[i]是按照从起点走到第i个节点花费d[i]+tr[i]的最短路径时,最后一次的增加值。
比如说上面的那个6+(7+1)+(9+2)+(3+3)+(5+4),表示一条路径,则这条路径终点节点的r数组的值是4。
因为走到这里最后一次加上的数字是4。
pre数组不说了,帅比浮云说了很清楚。。。
#include <cstdio>
#include <cstring>
#include <queue>
#define mp make_pair
using namespace std;
int n,m,h;
struct edge
{
int v,w;
edge*next;
};
edge* link[10001];
int d[10001],r[10001],tr[10001],pre[10001];
bool v[10001];
void add(int u,int v,int w)
{
edge* p=new edge;
p->v=v;
p->w=w;
p->next=link[u];
link[u]=p;
}
void del(edge* p)
{
if(p!=NULL)
{
del(p->next);
delete p;
}
}
void spfa()
{
queue<int>q;
memset(d,0x3f,sizeof(d));
d[1]=0;
q.push(1);
v[1]=true;
while(!q.empty())
{
int x=q.front();
q.pop();
v[x]=false;
for(edge* p=link[x];p!=0;p=p->next)
{
if(d[x]+tr[x]+p->w+r[x]<d[p->v]+tr[p->v])
{
d[p->v]=d[x]+p->w;
tr[p->v]=tr[x]+r[x];
r[p->v]=r[x]+1;
pre[p->v]=x;
if(v[p->v]==false)
{
v[p->v]=true;
q.push(p->v);
}
}
}
}
}
void print(int n)
{
if(n!=1)
print(pre[n]);
printf("%d ",n);
}
int main()
{
int CO2,H2O,H2CO3;
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&CO2,&H2O,&H2CO3);
add(CO2,H2O,H2CO3);
}
spfa();
printf("%d\n",d[n]+tr[n]);
print(n);
for(int i=1;i<=n;i++)
del(link[i]);
return 0;
}
祝各位NOIP2016 RP++ SCORE++