Description
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。
Input
第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k
Output
共n行,每行一个整数表示满足要求的数对(x,y)的个数
Sample Input
2
2 5 1 5 1
1 5 1 5 2
Sample Output
14
3
HINT
100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000
Solution
和BZOJ1101一样……只不过简单容斥一下就好了……假设下界为1,答案为$ans_{b,d}-ans_{a-1,d}-ans_{b,c-1}+ans_{a-1,c-1}$
Code
#include<iostream>
#include<cstring>
#include<cstdio>
#define N (100000+1000)
using namespace std; int T,a,b,c,d,k,vis[N],prime[N],sum[N],mu[N],cnt; void Get_mu()
{
mu[]=;
for (int i=; i<=; ++i)
{
if (!vis[i]){prime[++cnt]=i,mu[i]=-;}
for (int j=; j<=cnt && prime[j]*i<=; ++j)
{
vis[prime[j]*i]=true;
if (i%prime[j]==) break;
mu[prime[j]*i]=-mu[i];
}
}
for (int i=; i<=; ++i) sum[i]=sum[i-]+mu[i];
} int Calc(int n,int m)
{
int ans=; if (n>m) swap(n,m);
for (int l=,r; l<=n; l=r+)
{
r=min(n/(n/l),m/(m/l));
ans+=(sum[r]-sum[l-])*(n/l)*(m/l);
}
return ans;
} int main()
{
scanf("%d",&T);
Get_mu();
while (T--)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
printf("%d\n",Calc(b/k,d/k)-Calc((a-)/k,d/k)-Calc(b/k,(c-)/k)+Calc((a-)/k,(c-)/k));
}
}