Yet another reshape problem in data.table
data.table中的另一个重塑问题
set.seed(1234)
DT <- data.table(x=rep(c(1,2,3),each=4), y=c("A","B"), v=sample(1:100,12))
# x y v
# 1: 1 A 12
# 2: 1 B 62
...
#11: 3 A 63
#12: 3 B 49
I would like to do a cumulative sum of x
and v
by y
but the result to be presented as: The number of lines always stays the same, and when y==A
the SUM.*.A
is incremented, same when y==B
. (As usual y
could have many factors, 2 in this example)
我想用y做一个x和v的累加和,但结果表示为:行数始终保持不变,当y == A时,SUM。*。A递增,当y =时= B。 (像往常一样,y可能有很多因素,在本例中为2)
# SUM.x.A SUM.x.B SUM.v.A SUM.v.B
# 1: 1 NA 12 NA
# 2: 1 1 12 62
...
#11: 12 9 318 289
#12: 12 12 318 338
EDIT: Here is my poor solution clearly overly complicated
编辑:这是我糟糕的解决方案显然过于复杂
#first step is to create cumsum columns
colNames <- c("x","v"); newColNames <- paste0("SUM.",colNames)
DT[, newColNames:=lapply(.SD,cumsum) ,by=y, .SDcols=colNames, with=F];
#now we need to reshape each SUM.* to SUM.*.{yvalue}
DT[,N:=.I]; setattr(DT,"sorted","N")
g <- function(DT,SD){
cols <- c('N',grep('SUM',colnames(SD), value=T));
Yval <- unique(SD[,y]);
merge(DT, SD[,cols, with=F], suffixe=c('',paste0('.',Yval)), all.x=T);
}
DT <- Reduce(f=g,init=DT,x=split(DT,DT$y));
locf = function(x) {
ind = which(!is.na(x))
if(is.na(x[1])) ind = c(1,ind)
rep(x[ind], times = diff( c(ind, length(x) + 1) ))
}
newColNames <- grep('SUM',colnames(DT),value=T);
DT <- DT[, (newColNames):=lapply(.SD, locf), .SDcols=newColNames]
3 个解决方案
#1
5
Try this:
尝试这个:
cumsum0 <- function(x) { x <- cumsum(x); ifelse(x == 0, NA, x) }
DT2 <- DT[, {SUM.<-y; lapply(data.table(model.matrix(~ SUM.:x + SUM.:v + 0)), cumsum0)}]
setnames(DT2, sub("(.):(.)", "\\2.\\1", names(DT2)))
Simplifications:
简化:
1) If using 0
in place of NA
is ok then it can be simplified by omitting the first line which defines cumsum0
and replacing cumsum0
in the next line with cumsum
.
1)如果使用0代替NA是可以的,那么可以通过省略定义cumsum0的第一行并用cumsum替换下一行中的cumsum0来简化它。
2) The result of the second line has these names:
2)第二行的结果具有以下名称:
> names(DT2)
[1] "SUM.A:x" "SUM.B:x" "SUM.A:v" "SUM.B:v"
so if that is sufficient the last line can be dropped since its only purpose is to make the names exactly the same as in the question.
因此,如果这足够,则可以删除最后一行,因为它的唯一目的是使名称与问题中的名称完全相同。
The result (without the simplifications) is:
结果(没有简化)是:
> DT2
SUM.x.A SUM.x.B SUM.v.A SUM.v.B
1: 1 NA 12 NA
2: 1 1 12 62
3: 2 1 72 62
4: 2 2 72 123
5: 4 2 155 123
6: 4 4 155 220
7: 6 4 156 220
8: 6 6 156 242
9: 9 6 255 242
10: 9 9 255 289
11: 12 9 318 289
12: 12 12 318 338
#2
4
Here's another way:
这是另一种方式:
ys <- unique(DT$y)
sdcols <- c("x", "v")
cols <- paste0("SUM.", sdcols)
DT[, c(cols) := lapply(.SD, cumsum), by = y, .SDcols = sdcols]
for( i in seq_along(ys)) {
cols <- paste0("SUM.", sdcols, ".", ys[i])
DT[, c("v1", "v2") := list(SUM.x, SUM.v[i]), by = SUM.x]
DT[, c("v1", "v2") := list(c(rep(NA_integer_, (i-1)), v1)[seq_len(.N)],
c(rep(NA_integer_, (i-1)), v2)[seq_len(.N)])]
setnames(DT, c("v1", "v2"), cols)
}
My version of benchmarking with mnel's (from his post) and this function:
我使用mnel(来自他的帖子)和这个函数的基准测试版本:
The function from this post:
arun <- function(DT) {
ys <- unique(DT$y)
sdcols <- c("x", "v")
cols <- paste0("SUM.", sdcols)
DT[, c(cols) := lapply(.SD, cumsum), by = y, .SDcols = sdcols]
for( i in seq_along(ys)) {
cols <- paste0("SUM.", sdcols, ".", ys[i])
DT[, c("v1", "v2") := list(SUM.x, SUM.v[i]), by = SUM.x]
DT[, c("v1", "v2") := list(c(rep(NA_integer_, (i-1)), v1)[seq_len(.N)],
c(rep(NA_integer_, (i-1)), v2)[seq_len(.N)])]
setnames(DT, c("v1", "v2"), cols)
}
DT
}
Function from mnel's post:
mnel <- function(DT) {
set.seed(1234)
DT <- data.table(x=rep(c(1,2,3),each=4), y=c("A","B"), v=sample(1:100,12))
DT[, id := seq_len(nrow(DT))]
setkey(DT, y)
uniqY <- unique(DT$y)
for(jj in uniqY){
nc <- do.call(paste, c(expand.grid('Sum', c('x','v'),jj), sep ='.'))
DT[.(jj), (nc) := list(cumsum(x), cumsum(v))]
}
setkey(DT, id)
DT[, 5:8 := lapply(.SD, function(x) {
xn <- is.na(x)
x[xn] <- -Inf
xx <- cummax(x)
# deal with leading NA values
if(xn[1]){
xn1 <- which(xn)[1]
xx[seq_len(xn1)] <- NA}
xx }), .SDcols = 5:8]
}
Function from statquant:
statquant <- function(DT){
#first step is to create cumsum columns
colNames <- c("x","v"); newColNames <- paste0("SUM.",colNames)
DT[, newColNames:=lapply(.SD,cumsum) ,by=y, .SDcols=colNames, with=F];
#now we need to reshape each SUM.* to SUM.*.{yvalue}
DT[,N:=.I]; setattr(DT,"sorted","N")
g <- function(DT,SD){
cols <- c('N',grep('SUM',colnames(SD), value=T));
Yval <- unique(SD[,y]);
merge(DT, SD[,cols, with=F], suffixe=c('',paste0('.',Yval)), all.x=T);
}
DT <- Reduce(f=g,init=DT,x=split(DT,DT$y));
locf = function(x) {
ind = which(!is.na(x))
if(is.na(x[1])) ind = c(1,ind)
rep(x[ind], times = diff( c(ind, length(x) + 1) ))
}
newColNames <- grep('SUM',colnames(DT),value=T);
DT <- DT[, (newColNames):=lapply(.SD, locf), .SDcols=newColNames]
DT
}
Function from grothendieck
grothendieck <- function(DT) {
cumsum0 <- function(x) { x <- cumsum(x); ifelse(x == 0, NA, x) }
DT2 <- DT[, {SUM.<-y; lapply(data.table(model.matrix(~ SUM.:x + SUM.:v + 0)), cumsum0)}]
setnames(DT2, sub("(.):(.)", "\\2.\\1", names(DT2)))
DT2
}
Benchmarking:
library(data.table)
library(zoo)
set.seed(1234)
DT <- data.table(x=rep(c(1,2,3),each=4), y=c("A","B"), v=sample(1:100,12))
library(microbenchmark)
microbenchmark( s <- statquant(copy(DT)), g <- grothendieck(copy(DT)),
m <- mnel(copy(DT)), a <- arun(copy(DT)), times = 1e3)
# Unit: milliseconds
# expr min lq median uq max neval
# s <- statquant(copy(DT)) 13.041125 13.674083 14.493870 17.273151 144.74186 1000
# g <- grothendieck(copy(DT)) 3.634120 3.859143 4.006085 4.443388 80.01984 1000
# m <- mnel(copy(DT)) 7.819286 8.234178 8.596090 10.423668 87.07668 1000
# a <- arun(copy(DT)) 6.925419 7.369286 7.703003 9.262719 53.39823 1000
resulting data.table "a" (arun's)
# x y v SUM.x SUM.v SUM.x.A SUM.v.A SUM.x.B SUM.v.B
# 1: 1 A 12 1 12 1 12 NA NA
# 2: 1 B 62 1 62 1 12 1 62
# 3: 1 A 60 2 72 2 72 1 62
# 4: 1 B 61 2 123 2 72 2 123
# 5: 2 A 83 4 155 4 155 2 123
# 6: 2 B 97 4 220 4 155 4 220
# 7: 2 A 1 6 156 6 156 4 220
# 8: 2 B 22 6 242 6 156 6 242
# 9: 3 A 99 9 255 9 255 6 242
# 10: 3 B 47 9 289 9 255 9 289
# 11: 3 A 63 12 318 12 318 9 289
# 12: 3 B 49 12 338 12 318 12 338
Resulting data.table "m" (mnel's)
# x y v id Sum.x.A Sum.v.A Sum.x.B Sum.v.B
# 1: 1 A 12 1 1 12 NA NA
# 2: 1 B 62 2 1 12 1 62
# 3: 1 A 60 3 2 72 1 62
# 4: 1 B 61 4 2 72 2 123
# 5: 2 A 83 5 4 155 2 123
# 6: 2 B 97 6 4 155 4 220
# 7: 2 A 1 7 6 156 4 220
# 8: 2 B 22 8 6 156 6 242
# 9: 3 A 99 9 9 255 6 242
# 10: 3 B 47 10 9 255 9 289
# 11: 3 A 63 11 12 318 9 289
# 12: 3 B 49 12 12 318 12 338
Resulting data.table "s" (statquant's)
# N x y v SUM.x SUM.v SUM.x.A SUM.v.A SUM.x.B SUM.v.B
# 1: 1 1 A 12 1 12 1 12 NA NA
# 2: 2 1 B 62 1 62 1 12 1 62
# 3: 3 1 A 60 2 72 2 72 1 62
# 4: 4 1 B 61 2 123 2 72 2 123
# 5: 5 2 A 83 4 155 4 155 2 123
# 6: 6 2 B 97 4 220 4 155 4 220
# 7: 7 2 A 1 6 156 6 156 4 220
# 8: 8 2 B 22 6 242 6 156 6 242
# 9: 9 3 A 99 9 255 9 255 6 242
# 10: 10 3 B 47 9 289 9 255 9 289
# 11: 11 3 A 63 12 318 12 318 9 289
# 12: 12 3 B 49 12 338 12 318 12 338
Resulting data.table "g" (grothendieck's)
# SUM.x.A SUM.x.B SUM.v.A SUM.v.B
# 1: 1 NA 12 NA
# 2: 1 1 12 62
# 3: 2 1 72 62
# 4: 2 2 72 123
# 5: 4 2 155 123
# 6: 4 4 155 220
# 7: 6 4 156 220
# 8: 6 6 156 242
# 9: 9 6 255 242
# 10: 9 9 255 289
# 11: 12 9 318 289
# 12: 12 12 318 338
#3
3
Not sure this is the best solution, but you could do something like the following.
不确定这是最好的解决方案,但您可以执行以下操作。
set.seed(1234)
DT <- data.table(x=rep(c(1,2,3),each=4), y=c("A","B"), v=sample(1:100,12))
DT[, id := seq_len(nrow(DT))]
setkey(DT, y)
uniqY <- unique(DT$y)
for(jj in uniqY){
nc <- do.call(paste, c(expand.grid('Sum', c('x','v'),jj), sep ='.'))
DT[.(jj), (nc) := list(cumsum(x), cumsum(v))]
}
setkey(DT, id)
DT[, 5:8 := lapply(.SD, function(x) {
xn <- is.na(x)
x[xn] <- -Inf
xx <- cummax(x)
# deal with leading NA values
if(xn[1]){
xn1 <- which(xn)[1]
xx[seq_len(xn1)] <- NA}
xx }), .SDcols = 5:8]
#1
5
Try this:
尝试这个:
cumsum0 <- function(x) { x <- cumsum(x); ifelse(x == 0, NA, x) }
DT2 <- DT[, {SUM.<-y; lapply(data.table(model.matrix(~ SUM.:x + SUM.:v + 0)), cumsum0)}]
setnames(DT2, sub("(.):(.)", "\\2.\\1", names(DT2)))
Simplifications:
简化:
1) If using 0
in place of NA
is ok then it can be simplified by omitting the first line which defines cumsum0
and replacing cumsum0
in the next line with cumsum
.
1)如果使用0代替NA是可以的,那么可以通过省略定义cumsum0的第一行并用cumsum替换下一行中的cumsum0来简化它。
2) The result of the second line has these names:
2)第二行的结果具有以下名称:
> names(DT2)
[1] "SUM.A:x" "SUM.B:x" "SUM.A:v" "SUM.B:v"
so if that is sufficient the last line can be dropped since its only purpose is to make the names exactly the same as in the question.
因此,如果这足够,则可以删除最后一行,因为它的唯一目的是使名称与问题中的名称完全相同。
The result (without the simplifications) is:
结果(没有简化)是:
> DT2
SUM.x.A SUM.x.B SUM.v.A SUM.v.B
1: 1 NA 12 NA
2: 1 1 12 62
3: 2 1 72 62
4: 2 2 72 123
5: 4 2 155 123
6: 4 4 155 220
7: 6 4 156 220
8: 6 6 156 242
9: 9 6 255 242
10: 9 9 255 289
11: 12 9 318 289
12: 12 12 318 338
#2
4
Here's another way:
这是另一种方式:
ys <- unique(DT$y)
sdcols <- c("x", "v")
cols <- paste0("SUM.", sdcols)
DT[, c(cols) := lapply(.SD, cumsum), by = y, .SDcols = sdcols]
for( i in seq_along(ys)) {
cols <- paste0("SUM.", sdcols, ".", ys[i])
DT[, c("v1", "v2") := list(SUM.x, SUM.v[i]), by = SUM.x]
DT[, c("v1", "v2") := list(c(rep(NA_integer_, (i-1)), v1)[seq_len(.N)],
c(rep(NA_integer_, (i-1)), v2)[seq_len(.N)])]
setnames(DT, c("v1", "v2"), cols)
}
My version of benchmarking with mnel's (from his post) and this function:
我使用mnel(来自他的帖子)和这个函数的基准测试版本:
The function from this post:
arun <- function(DT) {
ys <- unique(DT$y)
sdcols <- c("x", "v")
cols <- paste0("SUM.", sdcols)
DT[, c(cols) := lapply(.SD, cumsum), by = y, .SDcols = sdcols]
for( i in seq_along(ys)) {
cols <- paste0("SUM.", sdcols, ".", ys[i])
DT[, c("v1", "v2") := list(SUM.x, SUM.v[i]), by = SUM.x]
DT[, c("v1", "v2") := list(c(rep(NA_integer_, (i-1)), v1)[seq_len(.N)],
c(rep(NA_integer_, (i-1)), v2)[seq_len(.N)])]
setnames(DT, c("v1", "v2"), cols)
}
DT
}
Function from mnel's post:
mnel <- function(DT) {
set.seed(1234)
DT <- data.table(x=rep(c(1,2,3),each=4), y=c("A","B"), v=sample(1:100,12))
DT[, id := seq_len(nrow(DT))]
setkey(DT, y)
uniqY <- unique(DT$y)
for(jj in uniqY){
nc <- do.call(paste, c(expand.grid('Sum', c('x','v'),jj), sep ='.'))
DT[.(jj), (nc) := list(cumsum(x), cumsum(v))]
}
setkey(DT, id)
DT[, 5:8 := lapply(.SD, function(x) {
xn <- is.na(x)
x[xn] <- -Inf
xx <- cummax(x)
# deal with leading NA values
if(xn[1]){
xn1 <- which(xn)[1]
xx[seq_len(xn1)] <- NA}
xx }), .SDcols = 5:8]
}
Function from statquant:
statquant <- function(DT){
#first step is to create cumsum columns
colNames <- c("x","v"); newColNames <- paste0("SUM.",colNames)
DT[, newColNames:=lapply(.SD,cumsum) ,by=y, .SDcols=colNames, with=F];
#now we need to reshape each SUM.* to SUM.*.{yvalue}
DT[,N:=.I]; setattr(DT,"sorted","N")
g <- function(DT,SD){
cols <- c('N',grep('SUM',colnames(SD), value=T));
Yval <- unique(SD[,y]);
merge(DT, SD[,cols, with=F], suffixe=c('',paste0('.',Yval)), all.x=T);
}
DT <- Reduce(f=g,init=DT,x=split(DT,DT$y));
locf = function(x) {
ind = which(!is.na(x))
if(is.na(x[1])) ind = c(1,ind)
rep(x[ind], times = diff( c(ind, length(x) + 1) ))
}
newColNames <- grep('SUM',colnames(DT),value=T);
DT <- DT[, (newColNames):=lapply(.SD, locf), .SDcols=newColNames]
DT
}
Function from grothendieck
grothendieck <- function(DT) {
cumsum0 <- function(x) { x <- cumsum(x); ifelse(x == 0, NA, x) }
DT2 <- DT[, {SUM.<-y; lapply(data.table(model.matrix(~ SUM.:x + SUM.:v + 0)), cumsum0)}]
setnames(DT2, sub("(.):(.)", "\\2.\\1", names(DT2)))
DT2
}
Benchmarking:
library(data.table)
library(zoo)
set.seed(1234)
DT <- data.table(x=rep(c(1,2,3),each=4), y=c("A","B"), v=sample(1:100,12))
library(microbenchmark)
microbenchmark( s <- statquant(copy(DT)), g <- grothendieck(copy(DT)),
m <- mnel(copy(DT)), a <- arun(copy(DT)), times = 1e3)
# Unit: milliseconds
# expr min lq median uq max neval
# s <- statquant(copy(DT)) 13.041125 13.674083 14.493870 17.273151 144.74186 1000
# g <- grothendieck(copy(DT)) 3.634120 3.859143 4.006085 4.443388 80.01984 1000
# m <- mnel(copy(DT)) 7.819286 8.234178 8.596090 10.423668 87.07668 1000
# a <- arun(copy(DT)) 6.925419 7.369286 7.703003 9.262719 53.39823 1000
resulting data.table "a" (arun's)
# x y v SUM.x SUM.v SUM.x.A SUM.v.A SUM.x.B SUM.v.B
# 1: 1 A 12 1 12 1 12 NA NA
# 2: 1 B 62 1 62 1 12 1 62
# 3: 1 A 60 2 72 2 72 1 62
# 4: 1 B 61 2 123 2 72 2 123
# 5: 2 A 83 4 155 4 155 2 123
# 6: 2 B 97 4 220 4 155 4 220
# 7: 2 A 1 6 156 6 156 4 220
# 8: 2 B 22 6 242 6 156 6 242
# 9: 3 A 99 9 255 9 255 6 242
# 10: 3 B 47 9 289 9 255 9 289
# 11: 3 A 63 12 318 12 318 9 289
# 12: 3 B 49 12 338 12 318 12 338
Resulting data.table "m" (mnel's)
# x y v id Sum.x.A Sum.v.A Sum.x.B Sum.v.B
# 1: 1 A 12 1 1 12 NA NA
# 2: 1 B 62 2 1 12 1 62
# 3: 1 A 60 3 2 72 1 62
# 4: 1 B 61 4 2 72 2 123
# 5: 2 A 83 5 4 155 2 123
# 6: 2 B 97 6 4 155 4 220
# 7: 2 A 1 7 6 156 4 220
# 8: 2 B 22 8 6 156 6 242
# 9: 3 A 99 9 9 255 6 242
# 10: 3 B 47 10 9 255 9 289
# 11: 3 A 63 11 12 318 9 289
# 12: 3 B 49 12 12 318 12 338
Resulting data.table "s" (statquant's)
# N x y v SUM.x SUM.v SUM.x.A SUM.v.A SUM.x.B SUM.v.B
# 1: 1 1 A 12 1 12 1 12 NA NA
# 2: 2 1 B 62 1 62 1 12 1 62
# 3: 3 1 A 60 2 72 2 72 1 62
# 4: 4 1 B 61 2 123 2 72 2 123
# 5: 5 2 A 83 4 155 4 155 2 123
# 6: 6 2 B 97 4 220 4 155 4 220
# 7: 7 2 A 1 6 156 6 156 4 220
# 8: 8 2 B 22 6 242 6 156 6 242
# 9: 9 3 A 99 9 255 9 255 6 242
# 10: 10 3 B 47 9 289 9 255 9 289
# 11: 11 3 A 63 12 318 12 318 9 289
# 12: 12 3 B 49 12 338 12 318 12 338
Resulting data.table "g" (grothendieck's)
# SUM.x.A SUM.x.B SUM.v.A SUM.v.B
# 1: 1 NA 12 NA
# 2: 1 1 12 62
# 3: 2 1 72 62
# 4: 2 2 72 123
# 5: 4 2 155 123
# 6: 4 4 155 220
# 7: 6 4 156 220
# 8: 6 6 156 242
# 9: 9 6 255 242
# 10: 9 9 255 289
# 11: 12 9 318 289
# 12: 12 12 318 338
#3
3
Not sure this is the best solution, but you could do something like the following.
不确定这是最好的解决方案,但您可以执行以下操作。
set.seed(1234)
DT <- data.table(x=rep(c(1,2,3),each=4), y=c("A","B"), v=sample(1:100,12))
DT[, id := seq_len(nrow(DT))]
setkey(DT, y)
uniqY <- unique(DT$y)
for(jj in uniqY){
nc <- do.call(paste, c(expand.grid('Sum', c('x','v'),jj), sep ='.'))
DT[.(jj), (nc) := list(cumsum(x), cumsum(v))]
}
setkey(DT, id)
DT[, 5:8 := lapply(.SD, function(x) {
xn <- is.na(x)
x[xn] <- -Inf
xx <- cummax(x)
# deal with leading NA values
if(xn[1]){
xn1 <- which(xn)[1]
xx[seq_len(xn1)] <- NA}
xx }), .SDcols = 5:8]