BZOJ 1101 [POI2007]Zap(莫比乌斯反演)

时间:2023-11-15 11:06:38

【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=1101

【题目大意】

  求[1,n][1,m]内gcd=k的情况

【题解】

  考虑求[1,n][1,m]里gcd=k

  等价于[1,n/k][1,m/k]里gcd=1

  考虑求[1,n][1,m]里gcd=1

  结果为sum(miu[d]*(n/d)*(m/d))

  预处理O(n^1.5)

  由于n/d只有sqrt(n)种取值,所以可以预处理出miu[]的前缀和 询问时分段求和

【代码】

#include <cstdio>
#include <algorithm>
const int N=50010;
using namespace std;
typedef long long ll;
int T,a,b,c,d,k;
int tot,p[N],miu[N],sum[N],v[N];
void mobius(int n){
int i,j;
for(miu[1]=1,i=2;i<=n;i++){
if(!v[i])p[tot++]=i,miu[i]=-1;
for(j=0;j<tot&&i*p[j]<=n;j++){
v[i*p[j]]=1;
if(i%p[j])miu[i*p[j]]=-miu[i];else break;
}
}for(i=1;i<=n;i++)sum[i]=sum[i-1]+miu[i];
}
ll cal(int n,int m){
ll t=0;
if(n>m)swap(n,m);
for(int i=1,j=0;i<=n;i=j+1)
j=min(n/(n/i),m/(m/i)),t+=(ll)(sum[j]-sum[i-1])*(n/i)*(m/i);
return t;
}
int main(){
mobius(50000);
scanf("%d",&T);
while(T--){
scanf("%d%d%d",&a,&b,&k);
printf("%lld\n",cal(a/k,b/k));
}return 0;
}