【TensorRT】在Jetson设备Xavier(TX2等通用)上使用TensorRT加速yolov5,详细记录过程

时间:2025-05-06 08:55:32
""" An example that uses TensorRT's Python api to make inferences. """ import ctypes import os import shutil import random import sys import threading import time import cv2 import numpy as np import pycuda.autoinit import pycuda.driver as cuda import tensorrt as trt import torch import torchvision import argparse CONF_THRESH = 0.5 IOU_THRESHOLD = 0.4 def get_img_path_batches(batch_size, img_dir): ret = [] batch = [] for root, dirs, files in os.walk(img_dir): for name in files: if len(batch) == batch_size: ret.append(batch) batch = [] batch.append(os.path.join(root, name)) if len(batch) > 0: ret.append(batch) return ret def plot_one_box(x, img, color=None, label=None, line_thickness=None): """ description: Plots one bounding box on image img, this function comes from YoLov5 project. param: x: a box likes [x1,y1,x2,y2] img: a opencv image object color: color to draw rectangle, such as (0,255,0) label: str line_thickness: int return: no return """ tl = ( line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 ) # line/font thickness color = color or [random.randint(0, 255) for _ in range(3)] c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA) if label: tf = max(tl - 1, 1) # font thickness t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled cv2.putText( img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA, ) class YoLov5TRT(object): """ description: A YOLOv5 class that warps TensorRT ops, preprocess and postprocess ops. """ def __init__(self, engine_file_path): # Create a Context on this device, self.ctx = cuda.Device(0).make_context() stream = cuda.Stream() TRT_LOGGER = trt.Logger(trt.Logger.INFO) runtime = trt.Runtime(TRT_LOGGER) # Deserialize the engine from file with open(engine_file_path, "rb") as f: engine = runtime.deserialize_cuda_engine(f.read()) context = engine.create_execution_context() host_inputs = [] cuda_inputs = [] host_outputs = [] cuda_outputs = [] bindings = [] for binding in engine: print('bingding:', binding, engine.get_binding_shape(binding)) size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size dtype = trt.nptype(engine.get_binding_dtype(binding)) # Allocate host and device buffers host_mem = cuda.pagelocked_empty(size, dtype) cuda_mem = cuda.mem_alloc(host_mem.nbytes) # Append the device buffer to device bindings. bindings.append(int(cuda_mem)) # Append to the appropriate list. if engine.binding_is_input(binding): self.input_w = engine.get_binding_shape(binding)[-1] self.input_h = engine.get_binding_shape(binding)[-2] host_inputs.append(host_mem) cuda_inputs.append(cuda_mem) else: host_outputs.append(host_mem) cuda_outputs.append(cuda_mem) # Store self.stream = stream self.context = context self.engine = engine self.host_inputs = host_inputs self.cuda_inputs = cuda_inputs self.host_outputs = host_outputs self.cuda_outputs = cuda_outputs self.bindings = bindings self.batch_size = engine.max_batch_size def infer(self, input_image_path): threading.Thread.__init__(self) # Make self the active context, pushing it on top of the context stack. self.ctx.push() self.input_image_path = input_image_path # Restore stream = self.stream context = self.context engine = self.engine host_inputs = self.host_inputs cuda_inputs = self.cuda_inputs host_outputs = self.host_outputs cuda_outputs = self.cuda_outputs bindings = self.bindings # Do image preprocess batch_image_raw = [] batch_origin_h = [] batch_origin_w = [] batch_input_image = np.empty(shape=[self.batch_size, 3, self.input_h, self.input_w]) input_image, image_raw, origin_h, origin_w = self.preprocess_image(input_image_path ) batch_origin_h.append(origin_h) batch_origin_w.append(origin_w) np.copyto(batch_input_image, input_image) batch_input_image = np.ascontiguousarray(batch_input_image) # Copy input image to host buffer np.copyto(host_inputs[0], batch_input_image.ravel()) start = time.time() # Transfer input data to the GPU. cuda.memcpy_htod_async(cuda_inputs[0], host_inputs[0], stream) # Run inference. context.execute_async(batch_size=self.batch_size, bindings=bindings, stream_handle=stream.handle) # Transfer predictions back from the GPU. cuda.memcpy_dtoh_async(host_outputs[0], cuda_outputs[0], stream) # Synchronize the stream stream.synchronize() end = time.time() # Remove any context from the top of the context stack, deactivating it. self.ctx.pop() # Here we use the first row of output in that batch_size = 1 output = host_outputs[0] # Do postprocess result_boxes, result_scores, result_classid = self.post_process( output, origin_h, origin_w) # Draw rectangles and labels on the original image for j in range(len(result_boxes)): box = result_boxes[j] plot_one_box( box, image_raw, label="{}:{:.2f}".format( categories[int(result_classid[j])], result_scores[j] ), ) return image_raw, end - start def destroy(self): # Remove any context from the top of the context stack, deactivating it. self.ctx.pop() def get_raw_image(self, image_path_batch): """ description: Read an image from image path """ for img_path in image_path_batch: yield cv2.imread(img_path) def get_raw_image_zeros(self, image_path_batch=None): """ description: Ready data for warmup """ for _ in range(self.batch_size): yield np.zeros([self.input_h, self.input_w, 3], dtype=np.uint8) def preprocess_image(self, input_image_path): """ description: Convert BGR image to RGB, resize and pad it to target size, normalize to [0,1], transform to NCHW format. param: input_image_path: str, image path return: image: the processed image image_raw: the original image h: original height w: original width """ image_raw = input_image_path h, w, c = image_raw.shape image = cv2.cvtColor(image_raw, cv2.COLOR_BGR2RGB) # Calculate widht and height and paddings r_w = self.input_w / w r_h = self.input_h / h if r_h > r_w: tw = self.input_w th = int(r_w * h) tx1 = tx2 = 0 ty1 = int((self.input_h - th) / 2) ty2 = self.input_h - th - ty1 else: tw = int(r_h * w) th = self.input_h tx1 = int((self.input_w - tw) / 2) tx2 = self.input_w - tw - tx1 ty1 = ty2 = 0 # Resize the image with long side while maintaining ratio image = cv2.resize(image, (tw, th)) # Pad the short side with (128,128,128) image = cv2.copyMakeBorder( image, ty1, ty2, tx1, tx2, cv2.BORDER_CONSTANT, (128, 128, 128) ) image = image.astype(np.float32) # Normalize to [0,1] image /= 255.0 # HWC to CHW format: image = np.transpose(image, [2, 0, 1]) # CHW to NCHW format image = np.expand_dims(image, axis=0) # Convert the image to row-major order, also known as "C order": image = np.ascontiguousarray(image) return image, image_raw, h, w def xywh2xyxy(self, origin_h, origin_w, x): """ description: Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right param: origin_h: height of original image origin_w: width of original image x: A boxes tensor, each row is a box [center_x, center_y, w, h] return: y: A boxes tensor, each row is a box [x1, y1, x2, y2] """ y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x) r_w = self.input_w / origin_w r_h = self.input_h / origin_h if r_h > r_w: y[:, 0] = x[:, 0] - x[:, 2] / 2 y[:, 2] = x[:, 0] + x[:, 2] / 2 y[:, 1] = x[:, 1] - x[:, 3] / 2 - (self.input_h - r_w * origin_h) / 2 y[:, 3] = x[:, 1] + x[:, 3] / 2 - (self.input_h - r_w * origin_h) / 2 y /= r_w else: y[:, 0] = x[:, 0] - x[:, 2] / 2 - (self.input_w - r_h * origin_w) / 2 y[:, 2] = x[:, 0] + x[:, 2] / 2 - (self.input_w - r_h * origin_w) / 2 y[:, 1] = x[:, 1] - x[:, 3] / 2 y[:, 3] = x[:, 1] + x[:, 3] / 2 y /= r_h return y def post_process(self, output, origin_h, origin_w): """ description: postprocess the prediction param: output: A tensor likes [num_boxes,cx,cy,w,h,conf,cls_id, cx,cy,w,h,conf,cls_id, ...] origin_h: height of original image origin_w: width of original image return: result_boxes: finally boxes, a boxes tensor, each row is a box [x1, y1, x2, y2] result_scores: finally scores, a tensor, each element is the score correspoing to box result_classid: finally classid, a tensor, each element is the classid correspoing to box """ # Get the num of boxes detected num = int(output[0]) # Reshape to a two dimentional ndarray pred = np.reshape(output[1:], (-1, 6))[:num, :] # to a torch Tensor pred = torch.Tensor(pred).cuda() # Get the boxes boxes = pred[:, :4] # Get the scores scores = pred[:, 4] # Get the classid classid = pred[:, 5] # Choose those boxes that score > CONF_THRESH si = scores > CONF_THRESH boxes = boxes[si, :] scores = scores[si] classid = classid[si] # Trandform bbox from [center_x, center_y, w, h] to [x1, y1, x2, y2] boxes = self.xywh2xyxy(origin_h, origin_w, boxes) # Do nms indices = torchvision.ops.nms(boxes, scores, iou_threshold=IOU_THRESHOLD).cpu() result_boxes = boxes[indices, :].cpu() result_scores = scores[indices].cpu() result_classid = classid[indices].cpu() return result_boxes, result_scores, result_classid class inferThread(threading.Thread): def __init__(self, yolov5_wrapper): threading.Thread.__init__(self) self.yolov5_wrapper = yolov5_wrapper def infer(self, frame): batch_image_raw, use_time = self.yolov5_wrapper.infer(frame) # for i, img_path in enumerate(self.image_path_batch): # parent, filename = (img_path) # save_name = ('output', filename) # # Save image # (save_name, batch_image_raw[i]) # print('input->{}, time->{:.2f}ms, saving into output/'.format(self.image_path_batch, use_time * 1000)) return batch_image_raw, use_time class warmUpThread(threading.Thread): def __init__(self, yolov5_wrapper): threading.Thread.__init__(self) self.yolov5_wrapper = yolov5_wrapper def run(self): batch_image_raw, use_time = self.yolov5_wrapper.infer(self.yolov5_wrapper.get_raw_image_zeros()) print('warm_up->{}, time->{:.2f}ms'.format(batch_image_raw[0].shape, use_time * 1000)) if __name__ == "__main__": # load custom plugins parser = argparse.ArgumentParser() parser.add_argument('--engine', nargs='+', type=str, default="build/", help='.engine path(s)') parser.add_argument('--save', type=int, default=0, help='save?') opt = parser.parse_args() PLUGIN_LIBRARY = "build/" engine_file_path = opt.engine ctypes.CDLL(PLUGIN_LIBRARY) # load coco labels categories = ["person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"] # a YoLov5TRT instance yolov5_wrapper = YoLov5TRT(engine_file_path) cap = cv2.VideoCapture(2) try: thread1 = inferThread(yolov5_wrapper) thread1.start() thread1.join() while 1: _, frame = cap.read() img, t = thread1.infer(frame) fps = 1/t imgout = cv2.putText(img, "FPS= %.2f" % (fps), (0, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) cv2.imshow("result", imgout) if cv2.waitKey(1) & 0XFF == ord('q'): # 1 millisecond break finally: # destroy the instance cap.release() cv2.destroyAllWindows() yolov5_wrapper.destroy()