《信号与系统学习笔记》—z变换(一)

时间:2024-05-23 08:04:12

注:本博客是基于奥本海姆《信号与系统》第二版编写,主要是为了自己学习的复习与加深。



一、z变换

1、单位脉冲响应为h[n]的离散时间线性时不变系统对复指数输入《信号与系统学习笔记》—z变换(一)的响应应y[n]为

《信号与系统学习笔记》—z变换(一)

其中,

《信号与系统学习笔记》—z变换(一)

若z=《信号与系统学习笔记》—z变换(一),这里w为实数(即|z|=1),则式(10.2)的求和式就是h[n]的离散时间博里叶变换。在更为一般的情况下,当|z|不限制为1的时候,式(10.2)就称为h[n]的z变换。

2、一个离散时间信号x[n]的z变换为

《信号与系统学习笔记》—z变换(一)

其中z是一个复变量。有时为了方便,也将x[n]的z变换写成Z{x[n]},而x[n]和它的z变换之间的关系记为

《信号与系统学习笔记》—z变换(一)

3、为了说明z变换和离散时间博里叶变换之间的关系,现将复变量z表示成极坐标形式为

《信号与系统学习笔记》—z变换(一)

用r表示z的模,而用w表示它的相角。利用r和w,式(10.3)变成

《信号与系统学习笔记》—z变换(一)

或等效为

《信号与系统学习笔记》—z变换(一)

由式(10.6)可知,《信号与系统学习笔记》—z变换(一)就是序列x[n]乘以实指数《信号与系统学习笔记》—z变换(一)够的博里叶变换,即

《信号与系统学习笔记》—z变换(一)

指数加权《信号与系统学习笔记》—z变换(一)可以随n增加而衰减,也可以随n增加而增长,这取决于r大于1还是小于1.特别注意到,若r=1,或等效为|z|=1,时(10.3)就变为博里叶变换,即

《信号与系统学习笔记》—z变换(一)

4、在z变换中是当变换变量z的模为1,即z=《信号与系统学习笔记》—z变换(一)时,z变换就演变为博里叶变换。于是,博里叶变换就成为在复数z中,半径为的圆上的z变换,如图10.1所示。

《信号与系统学习笔记》—z变换(一)

在z平面上,这个圆称为单位圆。

5、为了使z变换收敛,要求x[n]《信号与系统学习笔记》—z变换(一)的博里叶变换收敛。对于任何一个具体的序列来说,可以想到对某些r值,其博里叶变换收敛,而对另一些r值来说不收敛。一般来说,对于某一序列的z变换,存在着某一个z值得范围,对该范围内的z,X(z)收敛。这些值得范围称为收敛域。如果收敛域包括单位圆,则博里叶变换叶收敛。

1)z变换的表述即要求它的代数表示,有要求相应的收敛域。

2)、只要x[n]是实指数或复指数的线性组合,X(z)就一定是有理的。关于极点和零点,总是利用z多项式表示的分母和分子多项式的根。若分子的阶次超过分母的阶次,那么无限远点就有极点,若分子的阶次小于分母的阶次,那么无限远点就有零点。



二、z变换的收敛域

1、性质一;X(z)的收敛域是在z平面内以原点为中心的圆环。

2、性质二;收敛域内不包含任何极点。

3、性质三;如果x[n]是有限长序列,那么收敛域就是一整个z平面,可能除去z=0和/或z=∞。

4、性质四;如果x[n]是一个右边序列,并且|z|=《信号与系统学习笔记》—z变换(一),的圆位于收敛域内,那么|z|>《信号与系统学习笔记》—z变换(一)的全部有限z值都一定在这个收敛域内。

5、性质五;如果x[n]是一个左边序列,并且|z|=《信号与系统学习笔记》—z变换(一),的圆位于收敛域内,那么0<》|z|<《信号与系统学习笔记》—z变换(一)的全部有限z值都一定在这个收敛域内。

6、性质6;如果x[n]是双边序列,而且|z|=《信号与系统学习笔记》—z变换(一)的圆位于收敛域内,那么该收敛域在z域中一定是包含|z|=《信号与系统学习笔记》—z变换(一)这一圆环的环形区域。

7、性质7;如果x[n]的z变换X(z)是有理的,那么它的收敛域就被极点所界定,或者延伸至无限远。

8、性质八;如果x[n]的z变换X(z)是有理的,并且x[n]是右边序列,那么收敛域就位于z平面内最外层极点的外边,也就是半径等于X(x)极点中最大模值的圆的外边。而且,若x[n]是因果序列,即x[n]为n<0时等于零的右边序列,那么收敛域也包括z=∞。

9、性质九;如果x[n]的z变换X(z)是有理的,并且x[n]是左边序列,那么收敛域就位于z平面内最里层非零极点的里边,也就是半径等于X(x)中出去z=0的极点中最小模值的圆的外边。而且,若x[n]是反因果序列,即x[n]为n>0时等于零的左边序列,那么收敛域也包括z=∞。



三、z逆变换

1、z逆变换求解

《信号与系统学习笔记》—z变换(一)

式中《信号与系统学习笔记》—z变换(一)记为半径为r,以原点为中心的封闭圆上沿逆时针方向环绕一周的积分。r放入值可选为使X(z)收敛的任何值;也就是使|z|=r的积分围线位于收敛域内的任何值。

2、对于一个有理z变换,可以首先将其进行部分分式展开,然后逐项求其你变换。嘉定X(z)的部分分式展开式具有如下形式:

《信号与系统学习笔记》—z变换(一)

X(z)的逆变换就等于式(10.55)中每一项逆变换之和。若X(z)的收敛域位于极点z=ai的外边,那么与式(10.55)中相应项的逆变换就是《信号与系统学习笔记》—z变换(一)另方面,如X(z)的收敛域位于极点z=ai的里边,那么对应于这一项的逆变换就是《信号与系统学习笔记》—z变换(一)一般来说,在X(z)的部分分式展开式中,可以包括除了在式(10.55)中的一次项以外的其他项。

3、确定z逆变换的另一种是非有用的办法是建立在X(z)幂级数展开的基础上。这个方法直接来自z变换的定义式(10.3),因为由这个定义可看到,实际上z变换就是涉及z的正幂和负幂的一个幂级数,这个幂级数就是序列值x[n]。



三、利用零-极点图对博里叶变换进行稽核求值

1、在离散时间情况下,利用z平面内零极点向量也能对博里叶变换进行稽核求解。在这种情况下,有理函数是在|z|=1的单位圆上进行求值,所以应该考虑从极点和零点到这一单位圆上的向量。


一)、一阶系统

一阶因果离散时间系统的单位脉冲响应具有如下一般形式

《信号与系统学习笔记》—z变换(一)

它的z变换是

《信号与系统学习笔记》—z变换(一)

若|a|<1,收敛域就包括单位圆,结果h[n]的博里叶变换收敛等于H(z)。z=《信号与系统学习笔记》—z变换(一)。因此一阶系统的频率响应是

《信号与系统学习笔记》—z变换(一)

式(10.65)的零-极点图,以及对于不同的a值的模特性和相位特性,如图10.13所示

《信号与系统学习笔记》—z变换(一)

《信号与系统学习笔记》—z变换(一)

1)、如果想要求式(10.65)的频率响应,就需以z=《信号与系统学习笔记》—z变换(一)来完成对各z值得求值。

2)、频率响应在频率w处的的模就是向量v1的长度与向量v2的长度之比。

3)、频率响应的相位是向量v1相对于实轴的阿基哦度减去向量v2相对于实轴的角度。

4)、从该原点的零点到单位圆的向量v1长度不变且为1,因此对H(《信号与系统学习笔记》—z变换(一))的模特性没有任何影响。而该零点对H(《信号与系统学习笔记》—z变换(一))的相位的奉献则是该零点向量相对于实轴的角度,可以由图看到它就等于w。


二)、二阶系统

1、二阶系统的单位脉冲响应和频率响应分别由下面两式给出

《信号与系统学习笔记》—z变换(一)

《信号与系统学习笔记》—z变换(一)

其中0<r<1且0≤《信号与系统学习笔记》—z变换(一)≤π。其z变换为

《信号与系统学习笔记》—z变换(一)

H(z)的极点位于

《信号与系统学习笔记》—z变换(一)

并且在z=0有二阶零点。H(z)的零-极点图,以及0<《信号与系统学习笔记》—z变换(一)<π/2时的零-极点图和对应于不同a值的频率响应模特性和相位特性如图10.14所示

《信号与系统学习笔记》—z变换(一)

《信号与系统学习笔记》—z变换(一)

1)、频率响应的模等于向量v1模的平方除以向量v1和v2模的乘积。由于v1的长度对所有w值都是1,所以频率响应的模就等于两个极点向量v2和v3长度乘积的倒数。

2)、频率响应的相位等于向量v1相对于实轴的角度的两倍减去向量v2和v3的角度之和。



四、z变换的性质

一)、线性性质

1、若

《信号与系统学习笔记》—z变换(一)

《信号与系统学习笔记》—z变换(一)

《信号与系统学习笔记》—z变换(一)


如同所指出的,线性组合的收敛域至少是R1和R2相重合的部分。对于具有有理z变换的序列,如果《信号与系统学习笔记》—z变换(一)的全部极点构成的(也就是说,没有零极点相消),那么收敛域就一定是各单个收敛域的重叠部分。如果线性部分是这样来构成的,使某些零点的引入抵消掉某些极点,那么收敛域就可以增大。


二)、时移性质

1、若

《信号与系统学习笔记》—z变换(一)

《信号与系统学习笔记》—z变换(一)

1)、由于乘以《信号与系统学习笔记》—z变换(一)因此若n0>0,《信号与系统学习笔记》—z变换(一)将会在z=0引入极点,而这些极点可以抵消X(z)在z=0的零点。因此,虽然z=0不是X(z)的一个极点,但却可以是《信号与系统学习笔记》—z变换(一)X(z)的一个极点。在这种情况下,《信号与系统学习笔记》—z变换(一)X(z)的收敛域就等于X(x)的收敛域,但原点要除去。

2)、若n0<0,《信号与系统学习笔记》—z变换(一)将会在z=0引入零点,它可以抵消X(z)在z=0的极点。这样当z=0不是X(z)的一个极点时,但却可以是《信号与系统学习笔记》—z变换(一)X(z)的一个零点。在这种情况下,z=∞是《信号与系统学习笔记》—z变换(一)X(z)的一个极点,因此《信号与系统学习笔记》—z变换(一)X(z)的收敛域就等于X(x)的收敛域,但z=∞要除去。


三)、z域尺度变换

1、若

《信号与系统学习笔记》—z变换(一)

《信号与系统学习笔记》—z变换(一)

其中|z0|R代表域R的一泓尺度变化。也就是说,若z是X(z)的收敛域内的一点,那么|z0|z就在X(z/z0)的收敛域内。同样,若X(z)有一个极点(或零点)在z=a,那么X(z/z0)就有一个极点(或零点)在z=z0a。

式(10.73)的一个重要的特烈是当《信号与系统学习笔记》—z变换(一)时,这时|z0|R=R,并且

《信号与系统学习笔记》—z变换(一)

式(10.74)的左边相应于乘以复指数序列,而右边可以看成在z平面内的旋转,也就是说,也就是说,全部零极点位置在z平面旋转一个w0的角度,如图10.15所示

《信号与系统学习笔记》—z变换(一)


四)、时间反转

1、若

《信号与系统学习笔记》—z变换(一)

《信号与系统学习笔记》—z变换(一)

这就是说,若z0在x[n]的z变换收敛域内,那么1/z0就在x[-n]的z变换的收敛域内。


五)、时间扩展

1、《信号与系统学习笔记》—z变换(一)定义为

《信号与系统学习笔记》—z变换(一)

在这种情况下,若

《信号与系统学习笔记》—z变换(一)

《信号与系统学习笔记》—z变换(一)


六)、共轭

《信号与系统学习笔记》—z变换(一)

《信号与系统学习笔记》—z变换(一)

结果,若x[n]是实序列,就可由式(10.80)得到

《信号与系统学习笔记》—z变换(一)

因此,若X(z)有一个z=z0的极点(或零点),那么就一定有一个与z0共轭成对的z=z0*的极点(或零点)。


七)、卷积性质

1、若

《信号与系统学习笔记》—z变换(一)

《信号与系统学习笔记》—z变换(一)

《信号与系统学习笔记》—z变换(一)


八)、z域微分

1、若

《信号与系统学习笔记》—z变换(一)

《信号与系统学习笔记》—z变换(一)


九)、初值定理

若n<0时x[n]=0,则

《信号与系统学习笔记》—z变换(一)

对于一个因果序列,初值定理的一个直接结果就是:如果x[0]是有限值,那么《信号与系统学习笔记》—z变换(一)《信号与系统学习笔记》—z变换(一)就是有限值。结果,将X(z)表示成两个多项式之比,分子多项式的阶次不能大于分母多项式的解析;或者说,零点的个数不能多于极点的个数。


十)、性质小结

《信号与系统学习笔记》—z变换(一)

《信号与系统学习笔记》—z变换(一)

《信号与系统学习笔记》—z变换(一)



五、几个常用的z变换对

《信号与系统学习笔记》—z变换(一)

《信号与系统学习笔记》—z变换(一)