HDU 4757 Tree(可持续化字典树,lca)

时间:2024-05-01 21:01:37

题意:询问树上结点x到结点y路上上的权值异或z的最大值。

任意结点权值 ≤ 2^16,可以想到用字典树。

但是因为是询问某条路径上的字典树,将字典树可持续化,字典树上的结点保存在这条路径上的二进制数。

按照dfs序建树,结点u的字典树表示u到根结点路径上的字典树。

如果两个结点u和v,在同一条通往根结点的路径上,将会满足可减性。

因此只需要知道u、v、lca和fa[lca]四个结点的字典树就可以回答了。

/*********************************************************
* ------------------ *
* author AbyssFish *
**********************************************************/
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<queue>
#include<vector>
#include<stack>
#include<map>
#include<set>
#include<algorithm>
#include<cmath>
#include<numeric>
#include<climits>
using namespace std; const int maxn = 1e5+;
const int maxd = ;
const int maxnds = (maxd+)*maxn; int hd[maxn], nx[maxn<<], to[maxn<<], ec;
void add_edge(int u,int v)
{
nx[ec] = hd[u];
to[ec] = v;
hd[u] = ec++;
}
void init_g(int n){ memset(hd+,0xff,n*sizeof(int)); ec = ; }
#define eachedge int i = hd[u]; ~i; i = nx[i]
#define ifvalid int v = to[i]; if(v == fa[u]) continue; struct Node
{
int ch[];
int v;
}p[maxnds];
int tot; int n,m;
int stk[maxd+]; inline int *dcmp(int x)
{
for(int i = ; i < maxd; i++){
stk[i] = x>>i&;
}
return stk;
} void build(int *o, int v)
{
int *s = dcmp(v);
for(int i = maxd-; i >= ; i--){
o = &(p[*o].ch[s[i]]);
p[++tot] = p[*o];
*o = tot;
p[*o].v++;
}
} int a[maxn];
int fa[maxn];
int root[maxn]; void dfs_build(int u,int f = )
{
p[root[u] = ++tot] = p[root[fa[u] = f]];
build(root+u,a[u]);
for(eachedge){
ifvalid
dfs_build(v,u);
} } int *c_cmp;
bool cmp_id(int i,int j){ return c_cmp[i] < c_cmp[j]; } int dep[maxn];
int path[maxn<<];
int pid[maxn];
int dfs_clk; void get_path(int u,int d)
{
dep[u] = d;
path[++dfs_clk] = u;
pid[u] = dfs_clk;
for(eachedge){
ifvalid
get_path(v,d+);
path[++dfs_clk] = u;
}
} struct SparseTable
{
int mxk[maxn<<];
int d[maxn<<][];
void init(int *mp,int *r, int n)
{
mxk[] = -;
for(int i = ; i <= n; i++){
d[i][] = r[i];
mxk[i] = ((i&(i-)) == ) ?mxk[i-]+:mxk[i-];
}
c_cmp = mp;
for(int j = ; j <= mxk[n]; j++){
int t = (<<j)-, s = <<(j-);
for(int i = ; i + t <= n; i++){
d[i][j] = min(d[i][j-],d[i+s][j-],cmp_id);
}
} }
int RMQ(int l,int r)
{
int k = mxk[r-l];
return min(d[l][k],d[r-(<<k)][k],cmp_id);
}
}rmq; void lca_init(int u)
{
dfs_clk = ;
get_path(u,);
rmq.init(dep,path,dfs_clk);
} int q_lca(int u, int v)
{
if(pid[u] > pid[v]) swap(u,v);
return rmq.RMQ(pid[u],pid[v]+);
} vector<int> Tree; int cal_ch(int d)
{
int re = ;
for(int i = ; i < (int)Tree.size(); i++){
int o = Tree[i];
re += o >= ? p[p[o].ch[d]].v : -p[p[-o].ch[d]].v;
}
return re;
} void dump(int d)
{
for(int i = ; i < (int)Tree.size(); i++){
int &o = Tree[i];
o = o >= ? p[o].ch[d] : -p[-o].ch[d];
}
} int query(int x,int y,int z)
{
int re = z&~((<<)-);
int *s = dcmp(z);
Tree.clear();
Tree.push_back(root[x]);
Tree.push_back(root[y]);
int lca = q_lca(x,y);
Tree.push_back(-root[lca]);
Tree.push_back(-root[fa[lca]]); int tmp = ;
for(int i = maxd-; i >= ; i--, tmp <<= ){
int d = s[i]^;
if(cal_ch(d)){
tmp |= ;
dump(d);
}
else dump(d^);
}
return re|(tmp>>);
} void solve()
{
for(int i = ; i <= n; i++){
scanf("%d",a+i);
}
init_g(n);
for(int i = ,u,v; i < n; i++){
scanf("%d%d",&u,&v);
add_edge(u,v);
add_edge(v,u);
}
tot = ;
dfs_build();
lca_init();
for(int i = , x, y, z; i < m; i++){
scanf("%d%d%d",&x,&y,&z);
printf("%d\n",query(x,y,z));
}
} //#define LOCAL
int main()
{
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif
//p[0] = {{0,0},0}; //root[0] = 0;
while(~scanf("%d%d",&n,&m)){
solve();
}
return ;
}