LOJ #6485 LJJ 学二项式定理

时间:2024-04-26 09:06:14

QwQ

LOJ #6485


题意

求题面中那个算式


题解

墙上暴利

设$ f(x)=(sx+1)^n$

假设求出了生成函数$ f$的各项系数显然可以算出答案

因为模$ 4$的缘故只要对于每个余数算出次数模4为该余数的系数和即可

求系数和强上单位根反演即可

求模4余1相当于求模4余0之后平移一位即乘上$ x^{-1}$

好像讲的非常不清楚啊...


代码

#include<ctime>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
#define p 998244353
#define rt register int
#define ll long long
using namespace std;
inline ll read(){
ll x=;char zf=;char ch=getchar();
while(ch!='-'&&!isdigit(ch))ch=getchar();
if(ch=='-')zf=-,ch=getchar();
while(isdigit(ch))x=x*+ch-'',ch=getchar();return x*zf;
}
void write(ll y){if(y<)putchar('-'),y=-y;if(y>)write(y/);putchar(y%+);}
void writeln(const ll y){write(y);putchar('\n');}
int k,m,n,x,y,z,cnt,ans,a[],w[];
int ksm(int x,int y){
int ans=;
for(rt i=y;i;i>>=,x=1ll*x*x%p)if(i&)
ans=1ll*ans*x%p;
return ans;
}
int main(){
w[]=;w[]=ksm(,(p-)/);w[]=1ll*w[]*w[]%p;w[]=1ll*w[]*w[]%p;
for(rt T=read();T;T--){
n=read()%(p-);int s=read();
for(rt i=;i<;i++)a[i]=read();
int sum=;
for(rt j=;j<;j++){
const int v=ksm(1ll*s*w[j]%p+,n);
for(rt i=;i<;i++){
(sum+=1ll*a[i]*v%p*w[-i*j&]%p)%=p;
}
}
writeln(1ll*sum*ksm(,p-)%p);
}
return ;
}