场波知识整理——1.2赫兹天线

时间:2024-04-08 13:03:18

首先摆上我们的Maxwell方程组(遇事不决,朗诵圣经 ):
{×E=Bt×H=J+DtD=ρB=0 \left\{ \begin{aligned} &\nabla\times\overline{E}=-\frac{\partial\overline{B}}{\partial{t}} \\ &\nabla\times\overline{H}=\overline{J}+\frac{\partial\overline{D}}{\partial{t}}\\ &\nabla\cdot\overline{D}=\rho\\ &\nabla\cdot\overline{B}=0 \end{aligned} \right.
赫兹天线的结构如下图所示:场波知识整理——1.2赫兹天线
可以看成一个无源的LC振荡电路,因此令带电量为qcosωtq\cos{\omega{t}}.
电偶极矩为P=z^qlcosωtδ(r)\overline{P}=\hat{z}ql\cos{\omega{t}}\delta(r),加入δ(r)\delta(r)的原因是P\overline{P}只在原点存在.则:
J=dPdt=z^d(qlcosωt)δ(r)dt \overline{J}=\frac{d\overline{P}}{dt}=\hat{z}\frac{d(ql\cos\omega{t})\delta{(r)}}{dt}
引入矢量势A\overline{A},标量势ϕ\phi.由Maxwell方程,有:
B=0 \nabla\cdot\overline{B}=0
由于旋度的散度为0,令B=×A\overline{B}=\nabla\times\overline{A},进一步有:
×E=t(×A) \nabla\times\overline{E}=-\frac{\partial}{\partial{t}}(\nabla\times\overline{A})
由于梯度的旋度为0,而对t的偏导和求旋度无关,所以定义一个标量势ϕ\phi,有:
E=tAϕ \overline{E}=-\frac{\partial}{\partial{t}}\overline{A}-\nabla\phi
继续通过Maxwell进行推导:
×H=Dt+J1μ0××A=ϵ0t(tAϕ)+J(A)2A=μ0ϵ0(2t2Atϕ)+μ0J \begin{aligned} &\nabla\times\overline{H}=\frac{\partial\overline{D}}{\partial{t}}+\overline{J}\\ &\frac{1}{\mu_0}\nabla\times\nabla\times\overline{A}=\epsilon_0\frac{\partial}{\partial{t}}(-\frac{\partial}{\partial{t}}\overline{A}-\nabla\phi)+\overline{J}\\ &\nabla(\nabla\cdot\overline{A})-\nabla^2\overline{A}=\mu_0\epsilon_0(-\frac{\partial^2}{\partial{t^2}}\overline{A}-\frac{\partial}{\partial{t}}\nabla\phi)+\mu_0\overline{J}\\ \end{aligned}
A=μoϵ0tϕ\nabla\cdot\overline{A}=-\mu_o\epsilon_0\frac{\partial}{\partial{t}}\phi,则有:
2Aμ0ϵ02t2A=μ0J \nabla^2\overline{A}-\mu_0\epsilon_0\frac{\partial^2}{\partial{t^2}}\overline{A}=-\mu_0\overline{J}
继续引入一个标量势Π\Pi(Hertzian Potential),使得:
A=z^μ0tΠ \overline{A}=\hat{z}\mu_0\frac{\partial}{\partial{t}}\Pi
则有:
z^(2μ0tΠμ02ϵ03t3Π)=μ0J=z^(μ0)t(qlcosωtδ(r))2Πμ0ϵ02t2Π=qlcosωtδ(r) \begin{aligned} \hat{z}(\nabla^2\mu_0\frac{\partial}{\partial{t}}\Pi-{\mu_0}^2\epsilon_0\frac{\partial^3}{\partial{t^3}}\Pi)&=\mu_0\overline{J}\\ &=\hat{z}(-\mu_0)\frac{\partial}{\partial{t}}(ql\cos{\omega t}\delta(r))\\ \nabla^2\Pi-\mu_0\epsilon_0\frac{\partial^2}{\partial{t^2}}\Pi&=-ql\cos{\omega t}\delta(r) \end{aligned}
在球坐标系中,Π\Piθ,ϕ\theta,\phi无关,所以有:
2Π=1r2r2(rΠ) \nabla^2\Pi=\frac{1}{r}\frac{\partial^2}{\partial{r^2}}(r\Pi)
与前面得到的结果联立,可得:
1r[2r2(rΠ)μ0ϵ02t2Π]=0Π=crcos(kzωt) \frac{1}{r}[\frac{\partial^2}{\partial{r^2}}(r\Pi)-\mu_0\epsilon_0\frac{\partial^2}{\partial{t^2}}\Pi]=0\\ \Pi=\frac{c}{r}\cos{(kz-\omega t)}
为求解待定常数cc,当r0r\rightarrow0时,作积分,有:
ΔV0dV(2Πμ0ϵ02t2Π)=qlcosωtΔV0dV((Π))=ΔS0dSΠ=limr00πdθ02πr2sinθdϕΠr=limr04πr2(crcos(krωt)ckrsin(krωt))=4πccos(ωt) \begin{aligned} \iiint_{\Delta{V}\rightarrow{0}}dV(\nabla^2\Pi-\mu_0\epsilon_0\frac{\partial^2}{\partial{t^2}}\Pi)&=-ql\cos{\omega t}\\ \iiint_{\Delta{V}\rightarrow{0}}dV(\nabla\cdot(\nabla\Pi))&=\oiint_{\Delta{S}\rightarrow{0}}d\overline{S}\cdot\nabla\Pi\\ &=\lim_{r\rightarrow0}\int_{0}^{\pi}d\theta\int_{0}^{2\pi}r^2\sin{\theta}d\phi\cdot\frac{\partial\Pi}{\partial{r}}\\ &=\lim_{r\rightarrow0}4\pi r^2(-\frac{c}{r}\cos(kr-\omega t)-\frac{ck}{r}\sin(kr-\omega t))\\ &=-4\pi c \cos(\omega t) \end{aligned}
所以有c=ql4πc=\frac{ql}{4\pi},即:
Π=ql4πrcos(kzωt) \Pi=\frac{ql}{4\pi r}\cos(kz-\omega t)
根据直角坐标系和球坐标系之间的换算关系:
z^=r^(z^r^)+θ^(z^θ^)+ϕ^(z^ϕ^)=r^cosθθ^sinθA=z^μ0qlω4πrsin(krωt)=(r^cosθθ^sinθ)μ0qlω4πrsin(krωt)=r^Ar+θ^AθAr=sinθμ0ωql4πrsin(krωt)Aθ=cosθμ0ωql4πrsin(krωt)H=1μ0×A=1μ0r2sinθr^rθ^rsinθϕ^rθϕArrAθ0=ϕ^ωqlk4πrsinθ[cos(krωt)+1krsin(krωt)]E=Atϕ=k2ql4πϵ0r(r^2cosθ(1krsin(krωt)+1k2r2cos(krωt))+θ^sinθ(1krsin(krωt)+(1k2r21)cos(krωt))) \begin{aligned} \hat{z}&=\hat{r}(\hat{z}\cdot\hat{r})+\hat{\theta}(\hat{z}\cdot\hat{\theta})+\hat{\phi}(\hat{z}\cdot\hat{\phi})\\ &=\hat{r}\cos\theta-\hat\theta\sin\theta\\ \overline{A}&=\hat{z}\mu_0\frac{ql\omega}{4\pi r}\sin(kr-\omega t)\\ &=(\hat{r}\cos\theta-\hat\theta\sin\theta)\mu_0\frac{ql\omega}{4\pi r}\sin(kr-\omega t)\\ &=\hat{r}A_r+\hat\theta A_{\theta}\\ A_r&=-\sin\theta\cdot\mu_0\frac{\omega ql}{4\pi r}\sin(kr-\omega t)\\ A_{\theta}&=-\cos\theta\cdot\mu_0\frac{\omega ql}{4\pi r}\sin(kr-\omega t)\\ \overline{H}&=\frac{1}{\mu_0}\nabla\times\overline{A}\\ &=\frac{1}{\mu_0r^2\sin{\theta}}\left |\begin{array}{cccc} \hat{r} &r\hat\theta & r\sin\theta\hat\phi \\ \frac{\partial}{\partial{r}} &\frac{\partial}{\partial\theta} & \frac{\partial}{\partial\phi} \\ A_r & rA_{\theta} & 0 \\ \end{array}\right|\\ &=\hat\phi\frac{\omega qlk}{4\pi r}\sin\theta[-\cos(kr-\omega t)+\frac{1}{kr}\sin(kr-\omega t)]\\ \overline{E}&=-\frac{\partial\overline{A}}{\partial{t}}-\nabla\phi\\ &=\frac{k^2ql}{4\pi\epsilon_0r}(\hat{r}2\cos\theta(\frac{1}{kr}\sin(kr-\omega t)+\frac{1}{k^2r^2}\cos(kr-\omega t))+\hat{\theta}\sin\theta(\frac{1}{kr}\sin(kr-\omega t)+(\frac{1}{k^2r^2}-1)\cos(kr-\omega t))) \end{aligned}\\
对于远区场,kr>>1kr>>1,有:
H=ϕ^ωqlk4πrsinθcos(krωt)E=θ^k2ql4πϵ0rsinθcos(krωt)S=E×H=r^k3ωq2l2(4πr)2ϵ0sin2θcos2(krωt) \begin{aligned} &\overline{H}=-\hat\phi\frac{\omega qlk}{4\pi r}\sin\theta\cos(kr-\omega t)\\ &\overline{E}=-\hat\theta\frac{k^2ql}{4\pi\epsilon_0 r}\sin\theta\cos(kr-\omega t)\\ &\overline{S}=\overline{E}\times\overline{H}=\hat{r}\frac{k^3\omega q^2l^2}{{(4\pi r)}^2\epsilon_0}\sin^2\theta\cos^2(kr-\omega t) \end{aligned}
从而得到天线的辐射方向图:
场波知识整理——1.2赫兹天线
这也可以解释天空为什么是蓝色的。因为蓝光kk较大,能量较大(至于为什么不是紫色,可能和我们的视觉细胞对各种光的敏感度有关)。
对于恒定场,有ω=0\omega=0,即k=0k=0,有:
H=0E=ql4πϵr3(r^2cosθ+θ^sinθ) \begin{aligned} \overline{H}&=0\\ \overline{E}&=\frac{ql}{4\pi \epsilon r^3}(\hat{r}2\cos\theta+\hat\theta\sin\theta) \end{aligned}
对于近区场,kr<<1kr<<1,有:
H=ϕ^ωql4πr2sinθsin(ωt)=ϕ^l4πr2sinθddt(qcosωt)=θ^Il4πr2sinθ \begin{aligned} \overline{H}&=\hat\phi\frac{\omega ql}{4\pi r^2}\sin\theta\sin(-\omega t)\\ &=\hat\phi\frac{l}{4\pi r^2}\sin\theta\frac{d}{dt}(q\cos\omega t)\\ &=\hat\theta\frac{Il}{4\pi r^2}\sin\theta \end{aligned}
这就是毕奥-萨法尔定律(Bior-Savart law).