【NOIP2014】子矩阵

时间:2023-01-04 22:43:26

这题如果按暴力做只有一半分,最大时间复杂度为O(C(16,8)*C(16,8)); 很容易算出超时;

我们可以发现如果直接dp会很难想,但是知道选哪几行去dp就很好写状态转移方程:

dp[i][j]=min(dp[i][j],dp[k][j-1]+a[i]+b[k][i]);

其中dp[i][j]表示 前i列里选j列的子矩阵最大分值

a[i]表示 第i列选到的行的总差值

b[k][i]表示选到的每一行第k列和第i列之间的差值

我们只要枚举 行 然后dp一次,取最小值即可 这样最大时间复杂度就成了O(C(8,16)*n3);

最后附上我弱弱的pascal代码:

 var
i,j,k,n,m,n1,m1,ans:longint;
dp,a,f:array[..,..] of longint;
hc:array[..,..,..] of longint;
b,lc:array[..] of longint;
function min(a,b:longint):longint;
begin
if a>b then min:=b
else min:=a;
end;
procedure ddp;
var
i,j,k,max:longint;
begin
fillchar(f,sizeof(f),);
fillchar(lc,sizeof(lc),);
fillchar(dp,sizeof(dp),);
for i:= to m do
for j:= to n1- do
lc[i]:=lc[i]+abs(a[b[j+],i]-a[b[j],i]);
for i:= to m do
for j:=i+ to m do
for k:= to n1 do
f[i,j]:=f[i,j]+hc[b[k],i,j];
for i:= to m do
dp[i,]:=lc[i];
for i:= to m do
for j:= to m1 do
if i>=j then
begin
dp[i,j]:=maxlongint;
for k:=j- to i- do
dp[i,j]:=min(dp[i,j],dp[k,j-]+lc[i]+f[k,i]);
end;
for i:=m1 to m do
if dp[i,m1]<ans then ans:=dp[i,m1];
end;
procedure jw(ii:longint);
begin
inc(b[ii]);
if ii>= then
if b[ii]>(n-n1+ii) then
begin
jw(ii-);
b[ii]:=b[ii-]+;
end;
end;
begin
read(n,m,n1,m1);
for i:= to n do
for j:= to m do
begin
read(a[i,j]);
for k:= to j- do
hc[i,k,j]:=abs(a[i,j]-a[i,k]);
end;
for i:= to n1 do
b[i]:=i;
ans:=;
while b[]= do
begin
ddp;
jw(n1);
end;
write(ans);
end.