重建二叉树
题目
输入某二叉树的前序遍历和中序遍历,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含有重复的数字。
例如,前序遍历序列:{1,2,3,7,3,5,6,8},中序遍历序列:{4,7,2,1,5,3,8,6}
答案
前序遍历:
前序遍历首先访问根结点然后遍历左子树,最后遍历右子树。在遍历左、右子树时,仍然先访问根结点,然后遍历左子树,最后遍历右子树。
中序遍历:
中序遍历首先遍历左子树,然后访问根结点,最后遍历右子树。在遍历左、右子树时,仍然先遍历左子树,再访问根结点,最后遍历右子树。
#include <iostream> using namespace std; struct binary_tree_node{
int value;
binary_tree_node* left;
binary_tree_node* right;
}; binary_tree_node* binary_tree_constuct(int* preorder, int* inorder, int length); int main()
{
int pre[] = {,,,,,,,};
int in[] = {,,,,,,,}; binary_tree_node* root = binary_tree_constuct(pre, in, );
} binary_tree_node* construct_method(int* preorder, int* endpreorder, int* inorder, int* endinorder)
{
int root_value = preorder[];
binary_tree_node* root = new binary_tree_node();
root->left = NULL;
root->right = NULL; cout<<root_value<<" "; if(preorder == endpreorder && inorder == endinorder)
return root; int* rootIndex = preorder;
rootIndex++;
while(*rootIndex != root_value && rootIndex < endpreorder)
rootIndex++; int left_len = rootIndex - preorder;
int* left_preorder_end = preorder + left_len;
//left
if(left_len > )
{
root->left = construct_method(preorder+, left_preorder_end, inorder, rootIndex-);
}
//right
if(left_len < endpreorder - preorder)
{
root->right = construct_method(left_preorder_end+, endpreorder, rootIndex+, endinorder);
} return root;
} binary_tree_node* binary_tree_constuct(int* preorder, int* inorder, int length)
{
if(preorder == NULL || inorder == NULL || length <= )
{
return NULL;
} return construct_method(preorder, preorder+length-, inorder,inorder+length-); }