OpenCV进行图像相似度对比的几种办法

时间:2022-06-14 10:30:09

转载请注明出处:http://blog.csdn.net/wangyaninglm/article/details/43853435

来自:shiter编写程序的艺术

OpenCV进行图像相似度对比的几种办法

对计算图像相似度的方法,本文做了如下总结,主要有三种办法:

1.PSNR峰值信噪比

PSNR(Peak Signal to Noise Ratio),一种全参考的图像质量评价指标。

简介:https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio

PSNR是最普遍和使用最为广泛的一种图像客观评价指标,然而它是基于对应像素点间的误差,即基于误差敏感的图像质量评价。由于并未考虑到人眼的视觉特性(人眼对空间频率较低的对比差异敏感度较高,人眼对亮度对比差异的敏感度较色度高,人眼对一个区域的感知结果会受到其周围邻近区域的影响等),因而经常出现评价结果与人的主观感觉不一致的情况。

SSIM(structural similarity)结构相似性,也是一种全参考的图像质量评价指标,它分别从亮度、对比度、结构三方面度量图像相似性。

OpenCV进行图像相似度对比的几种办法

SSIM取值范围[0,1],值越大,表示图像失真越小.

在实际应用中,可以利用滑动窗将图像分块,令分块总数为N,考虑到窗口形状对分块的影响,采用高斯加权计算每一窗口的均值、方差以及协方差,然后计算对应块的结构相似度SSIM,最后将平均值作为两图像的结构相似性度量,即平均结构相似性MSSIM:

参考资料

[1] 峰值信噪比-*

[2] 王宇庆,刘维亚,王勇. 一种基于局部方差和结构相似度的图像质量评价方法[J]. 光电子激光,2008。

[3]http://www.cnblogs.com/vincent2012/archive/2012/10/13/2723152.html

官方文档的说明,不过是GPU版本的,我们可以修改不用gpu不然还得重新编译

http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/highgui/video-input-psnr-ssim/video-input-psnr-ssim.html#videoinputpsnrmssim

http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/gpu/gpu-basics-similarity/gpu-basics-similarity.html?highlight=psnr

// PSNR.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h" #include <iostream> // Console I/O
#include <sstream> // String to number conversion #include <opencv2/core/core.hpp> // Basic OpenCV structures
#include <opencv2/imgproc/imgproc.hpp>// Image processing methods for the CPU
#include <opencv2/highgui/highgui.hpp>// Read images
#include <opencv2/gpu/gpu.hpp> // GPU structures and methods using namespace std;
using namespace cv; double getPSNR(const Mat& I1, const Mat& I2); // CPU versions
Scalar getMSSIM( const Mat& I1, const Mat& I2); double getPSNR_GPU(const Mat& I1, const Mat& I2); // Basic GPU versions
Scalar getMSSIM_GPU( const Mat& I1, const Mat& I2); struct BufferPSNR // Optimized GPU versions
{ // Data allocations are very expensive on GPU. Use a buffer to solve: allocate once reuse later.
gpu::GpuMat gI1, gI2, gs, t1,t2; gpu::GpuMat buf;
};
double getPSNR_GPU_optimized(const Mat& I1, const Mat& I2, BufferPSNR& b); struct BufferMSSIM // Optimized GPU versions
{ // Data allocations are very expensive on GPU. Use a buffer to solve: allocate once reuse later.
gpu::GpuMat gI1, gI2, gs, t1,t2; gpu::GpuMat I1_2, I2_2, I1_I2;
vector<gpu::GpuMat> vI1, vI2; gpu::GpuMat mu1, mu2;
gpu::GpuMat mu1_2, mu2_2, mu1_mu2; gpu::GpuMat sigma1_2, sigma2_2, sigma12;
gpu::GpuMat t3; gpu::GpuMat ssim_map; gpu::GpuMat buf;
};
Scalar getMSSIM_GPU_optimized( const Mat& i1, const Mat& i2, BufferMSSIM& b); void help()
{
cout
<< "\n--------------------------------------------------------------------------" << endl
<< "This program shows how to port your CPU code to GPU or write that from scratch." << endl
<< "You can see the performance improvement for the similarity check methods (PSNR and SSIM)." << endl
<< "Usage:" << endl
<< "./gpu-basics-similarity referenceImage comparedImage numberOfTimesToRunTest(like 10)." << endl
<< "--------------------------------------------------------------------------" << endl
<< endl;
} int main(int argc, char *argv[])
{
help();
Mat I1 = imread("swan1.jpg",1); // Read the two images
Mat I2 = imread("swan2.jpg",1); if (!I1.data || !I2.data) // Check for success
{
cout << "Couldn't read the image";
return 0;
} BufferPSNR bufferPSNR;
BufferMSSIM bufferMSSIM; int TIMES;
stringstream sstr("500");
sstr >> TIMES;
double time, result; //------------------------------- PSNR CPU ----------------------------------------------------
time = (double)getTickCount(); for (int i = 0; i < TIMES; ++i)
result = getPSNR(I1,I2); time = 1000*((double)getTickCount() - time)/getTickFrequency();
time /= TIMES; cout << "Time of PSNR CPU (averaged for " << TIMES << " runs): " << time << " milliseconds."
<< " With result of: " << result << endl; ////------------------------------- PSNR GPU ----------------------------------------------------
//time = (double)getTickCount(); //for (int i = 0; i < TIMES; ++i)
// result = getPSNR_GPU(I1,I2); //time = 1000*((double)getTickCount() - time)/getTickFrequency();
//time /= TIMES; //cout << "Time of PSNR GPU (averaged for " << TIMES << " runs): " << time << " milliseconds."
// << " With result of: " << result << endl;
/*
//------------------------------- PSNR GPU Optimized--------------------------------------------
time = (double)getTickCount(); // Initial call
result = getPSNR_GPU_optimized(I1, I2, bufferPSNR);
time = 1000*((double)getTickCount() - time)/getTickFrequency();
cout << "Initial call GPU optimized: " << time <<" milliseconds."
<< " With result of: " << result << endl; time = (double)getTickCount();
for (int i = 0; i < TIMES; ++i)
result = getPSNR_GPU_optimized(I1, I2, bufferPSNR); time = 1000*((double)getTickCount() - time)/getTickFrequency();
time /= TIMES; cout << "Time of PSNR GPU OPTIMIZED ( / " << TIMES << " runs): " << time
<< " milliseconds." << " With result of: " << result << endl << endl; //------------------------------- SSIM CPU -----------------------------------------------------
Scalar x;
time = (double)getTickCount(); for (int i = 0; i < TIMES; ++i)
x = getMSSIM(I1,I2); time = 1000*((double)getTickCount() - time)/getTickFrequency();
time /= TIMES; cout << "Time of MSSIM CPU (averaged for " << TIMES << " runs): " << time << " milliseconds."
<< " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl; //------------------------------- SSIM GPU -----------------------------------------------------
time = (double)getTickCount(); for (int i = 0; i < TIMES; ++i)
x = getMSSIM_GPU(I1,I2); time = 1000*((double)getTickCount() - time)/getTickFrequency();
time /= TIMES; cout << "Time of MSSIM GPU (averaged for " << TIMES << " runs): " << time << " milliseconds."
<< " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl; //------------------------------- SSIM GPU Optimized--------------------------------------------
time = (double)getTickCount();
x = getMSSIM_GPU_optimized(I1,I2, bufferMSSIM);
time = 1000*((double)getTickCount() - time)/getTickFrequency();
cout << "Time of MSSIM GPU Initial Call " << time << " milliseconds."
<< " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl; time = (double)getTickCount(); for (int i = 0; i < TIMES; ++i)
x = getMSSIM_GPU_optimized(I1,I2, bufferMSSIM); time = 1000*((double)getTickCount() - time)/getTickFrequency();
time /= TIMES; cout << "Time of MSSIM GPU OPTIMIZED ( / " << TIMES << " runs): " << time << " milliseconds."
<< " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl << endl;
return 0;
*/
getchar();
} double getPSNR(const Mat& I1, const Mat& I2)
{
Mat s1;
absdiff(I1, I2, s1); // |I1 - I2|
s1.convertTo(s1, CV_32F); // cannot make a square on 8 bits
s1 = s1.mul(s1); // |I1 - I2|^2 Scalar s = sum(s1); // sum elements per channel double sse = s.val[0] + s.val[1] + s.val[2]; // sum channels if( sse <= 1e-10) // for small values return zero
return 0;
else
{
double mse =sse /(double)(I1.channels() * I1.total());
double psnr = 10.0*log10((255*255)/mse);
return psnr;
}
} double getPSNR_GPU_optimized(const Mat& I1, const Mat& I2, BufferPSNR& b)
{
b.gI1.upload(I1);
b.gI2.upload(I2); b.gI1.convertTo(b.t1, CV_32F);
b.gI2.convertTo(b.t2, CV_32F); gpu::absdiff(b.t1.reshape(1), b.t2.reshape(1), b.gs);
gpu::multiply(b.gs, b.gs, b.gs); double sse = gpu::sum(b.gs, b.buf)[0]; if( sse <= 1e-10) // for small values return zero
return 0;
else
{
double mse = sse /(double)(I1.channels() * I1.total());
double psnr = 10.0*log10((255*255)/mse);
return psnr;
}
} double getPSNR_GPU(const Mat& I1, const Mat& I2)
{
gpu::GpuMat gI1, gI2, gs, t1,t2; gI1.upload(I1);
gI2.upload(I2); gI1.convertTo(t1, CV_32F);
gI2.convertTo(t2, CV_32F); gpu::absdiff(t1.reshape(1), t2.reshape(1), gs);
gpu::multiply(gs, gs, gs); Scalar s = gpu::sum(gs);
double sse = s.val[0] + s.val[1] + s.val[2]; if( sse <= 1e-10) // for small values return zero
return 0;
else
{
double mse =sse /(double)(gI1.channels() * I1.total());
double psnr = 10.0*log10((255*255)/mse);
return psnr;
}
} Scalar getMSSIM( const Mat& i1, const Mat& i2)
{
const double C1 = 6.5025, C2 = 58.5225;
/***************************** INITS **********************************/
int d = CV_32F; Mat I1, I2;
i1.convertTo(I1, d); // cannot calculate on one byte large values
i2.convertTo(I2, d); Mat I2_2 = I2.mul(I2); // I2^2
Mat I1_2 = I1.mul(I1); // I1^2
Mat I1_I2 = I1.mul(I2); // I1 * I2 /*************************** END INITS **********************************/ Mat mu1, mu2; // PRELIMINARY COMPUTING
GaussianBlur(I1, mu1, Size(11, 11), 1.5);
GaussianBlur(I2, mu2, Size(11, 11), 1.5); Mat mu1_2 = mu1.mul(mu1);
Mat mu2_2 = mu2.mul(mu2);
Mat mu1_mu2 = mu1.mul(mu2); Mat sigma1_2, sigma2_2, sigma12; GaussianBlur(I1_2, sigma1_2, Size(11, 11), 1.5);
sigma1_2 -= mu1_2; GaussianBlur(I2_2, sigma2_2, Size(11, 11), 1.5);
sigma2_2 -= mu2_2; GaussianBlur(I1_I2, sigma12, Size(11, 11), 1.5);
sigma12 -= mu1_mu2; ///////////////////////////////// FORMULA ////////////////////////////////
Mat t1, t2, t3; t1 = 2 * mu1_mu2 + C1;
t2 = 2 * sigma12 + C2;
t3 = t1.mul(t2); // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2)) t1 = mu1_2 + mu2_2 + C1;
t2 = sigma1_2 + sigma2_2 + C2;
t1 = t1.mul(t2); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2)) Mat ssim_map;
divide(t3, t1, ssim_map); // ssim_map = t3./t1; Scalar mssim = mean( ssim_map ); // mssim = average of ssim map
return mssim;
} Scalar getMSSIM_GPU( const Mat& i1, const Mat& i2)
{
const float C1 = 6.5025f, C2 = 58.5225f;
/***************************** INITS **********************************/
gpu::GpuMat gI1, gI2, gs1, t1,t2; gI1.upload(i1);
gI2.upload(i2); gI1.convertTo(t1, CV_MAKE_TYPE(CV_32F, gI1.channels()));
gI2.convertTo(t2, CV_MAKE_TYPE(CV_32F, gI2.channels())); vector<gpu::GpuMat> vI1, vI2;
gpu::split(t1, vI1);
gpu::split(t2, vI2);
Scalar mssim; for( int i = 0; i < gI1.channels(); ++i )
{
gpu::GpuMat I2_2, I1_2, I1_I2; gpu::multiply(vI2[i], vI2[i], I2_2); // I2^2
gpu::multiply(vI1[i], vI1[i], I1_2); // I1^2
gpu::multiply(vI1[i], vI2[i], I1_I2); // I1 * I2 /*************************** END INITS **********************************/
gpu::GpuMat mu1, mu2; // PRELIMINARY COMPUTING
gpu::GaussianBlur(vI1[i], mu1, Size(11, 11), 1.5);
gpu::GaussianBlur(vI2[i], mu2, Size(11, 11), 1.5); gpu::GpuMat mu1_2, mu2_2, mu1_mu2;
gpu::multiply(mu1, mu1, mu1_2);
gpu::multiply(mu2, mu2, mu2_2);
gpu::multiply(mu1, mu2, mu1_mu2); gpu::GpuMat sigma1_2, sigma2_2, sigma12; gpu::GaussianBlur(I1_2, sigma1_2, Size(11, 11), 1.5);
//sigma1_2 = sigma1_2 - mu1_2;
gpu::subtract(sigma1_2,mu1_2,sigma1_2); gpu::GaussianBlur(I2_2, sigma2_2, Size(11, 11), 1.5);
//sigma2_2 = sigma2_2 - mu2_2; gpu::GaussianBlur(I1_I2, sigma12, Size(11, 11), 1.5);
(Mat)sigma12 =(Mat)sigma12 - (Mat)mu1_mu2;
//sigma12 = sigma12 - mu1_mu2 ///////////////////////////////// FORMULA ////////////////////////////////
gpu::GpuMat t1, t2, t3; // t1 = 2 * mu1_mu2 + C1;
// t2 = 2 * sigma12 + C2;
// gpu::multiply(t1, t2, t3); // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
//
// t1 = mu1_2 + mu2_2 + C1;
// t2 = sigma1_2 + sigma2_2 + C2;
// gpu::multiply(t1, t2, t1); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2)) gpu::GpuMat ssim_map;
gpu::divide(t3, t1, ssim_map); // ssim_map = t3./t1; Scalar s = gpu::sum(ssim_map);
mssim.val[i] = s.val[0] / (ssim_map.rows * ssim_map.cols); }
return mssim;
} Scalar getMSSIM_GPU_optimized( const Mat& i1, const Mat& i2, BufferMSSIM& b)
{
int cn = i1.channels(); const float C1 = 6.5025f, C2 = 58.5225f;
/***************************** INITS **********************************/ b.gI1.upload(i1);
b.gI2.upload(i2); gpu::Stream stream; stream.enqueueConvert(b.gI1, b.t1, CV_32F);
stream.enqueueConvert(b.gI2, b.t2, CV_32F); gpu::split(b.t1, b.vI1, stream);
gpu::split(b.t2, b.vI2, stream);
Scalar mssim; for( int i = 0; i < b.gI1.channels(); ++i )
{
gpu::multiply(b.vI2[i], b.vI2[i], b.I2_2, stream); // I2^2
gpu::multiply(b.vI1[i], b.vI1[i], b.I1_2, stream); // I1^2
gpu::multiply(b.vI1[i], b.vI2[i], b.I1_I2, stream); // I1 * I2 //gpu::GaussianBlur(b.vI1[i], b.mu1, Size(11, 11), 1.5, 0, BORDER_DEFAULT, -1, stream);
//gpu::GaussianBlur(b.vI2[i], b.mu2, Size(11, 11), 1.5, 0, BORDER_DEFAULT, -1, stream); gpu::multiply(b.mu1, b.mu1, b.mu1_2, stream);
gpu::multiply(b.mu2, b.mu2, b.mu2_2, stream);
gpu::multiply(b.mu1, b.mu2, b.mu1_mu2, stream); //gpu::GaussianBlur(b.I1_2, b.sigma1_2, Size(11, 11), 1.5, 0, BORDER_DEFAULT, -1, stream);
//gpu::subtract(b.sigma1_2, b.mu1_2, b.sigma1_2, stream);
//b.sigma1_2 -= b.mu1_2; - This would result in an extra data transfer operation //gpu::GaussianBlur(b.I2_2, b.sigma2_2, Size(11, 11), 1.5, 0, BORDER_DEFAULT, -1, stream);
//gpu::subtract(b.sigma2_2, b.mu2_2, b.sigma2_2, stream);
//b.sigma2_2 -= b.mu2_2; //gpu::GaussianBlur(b.I1_I2, b.sigma12, Size(11, 11), 1.5, 0, BORDER_DEFAULT, -1, stream);
//gpu::subtract(b.sigma12, b.mu1_mu2, b.sigma12, stream);
//b.sigma12 -= b.mu1_mu2; //here too it would be an extra data transfer due to call of operator*(Scalar, Mat)
gpu::multiply(b.mu1_mu2, 2, b.t1, stream); //b.t1 = 2 * b.mu1_mu2 + C1;
//gpu::add(b.t1, C1, b.t1, stream);
gpu::multiply(b.sigma12, 2, b.t2, stream); //b.t2 = 2 * b.sigma12 + C2;
//gpu::add(b.t2, C2, b.t2, stream); gpu::multiply(b.t1, b.t2, b.t3, stream); // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2)) //gpu::add(b.mu1_2, b.mu2_2, b.t1, stream);
//gpu::add(b.t1, C1, b.t1, stream); //gpu::add(b.sigma1_2, b.sigma2_2, b.t2, stream);
//gpu::add(b.t2, C2, b.t2, stream); gpu::multiply(b.t1, b.t2, b.t1, stream); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
gpu::divide(b.t3, b.t1, b.ssim_map, stream); // ssim_map = t3./t1; stream.waitForCompletion(); Scalar s = gpu::sum(b.ssim_map, b.buf);
mssim.val[i] = s.val[0] / (b.ssim_map.rows * b.ssim_map.cols); }
return mssim;
}

两幅一样的图片,对比结果:

OpenCV进行图像相似度对比的几种办法

OpenCV进行图像相似度对比的几种办法

2.感知哈希算法

(perceptual hash algorithm)

http://blog.csdn.net/fengbingchun/article/details/42153261

感知哈希算法(perceptual hash algorithm),它的作用是对每张图像生成一个“指纹”(fingerprint)字符串,然后比较不同图像的指纹。结果越接近,就说明图像越相似。

实现步骤:

1. 缩小尺寸:将图像缩小到8*8的尺寸,总共64个像素。这一步的作用是去除图像的细节,只保留结构/明暗等基本信息,摒弃不同尺寸/比例带来的图像差异;

2. 简化色彩:将缩小后的图像,转为64级灰度,即所有像素点总共只有64种颜色;

3. 计算平均值:计算所有64个像素的灰度平均值;

4. 比较像素的灰度:将每个像素的灰度,与平均值进行比较,大于或等于平均值记为1,小于平均值记为0;

5. 计算哈希值:将上一步的比较结果,组合在一起,就构成了一个64位的整数,这就是这张图像的指纹。组合的次序并不重要,只要保证所有图像都采用同样次序就行了;

6. 得到指纹以后,就可以对比不同的图像,看看64位中有多少位是不一样的。在理论上,这等同于”汉明距离”(Hamming distance,在信息论中,两个等长字符串之间的汉明距离是两个字符串对应位置的不同字符的个数)。如果不相同的数据位数不超过5,就说明两张图像很相似;如果大于10,就说明这是两张不同的图像。

以上内容摘自:http://www.ruanyifeng.com/blog/2011/07/principle_of_similar_image_search.html

代码:

// similarity.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h"
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp> #pragma comment(lib,"opencv_core2410d.lib")
#pragma comment(lib,"opencv_highgui2410d.lib")
#pragma comment(lib,"opencv_imgproc2410d.lib") using namespace std; int _tmain(int argc, _TCHAR* argv[])
{ string strSrcImageName = "swan.jpg"; cv::Mat matSrc, matSrc1, matSrc2; matSrc = cv::imread(strSrcImageName, CV_LOAD_IMAGE_COLOR);
CV_Assert(matSrc.channels() == 3); cv::resize(matSrc, matSrc1, cv::Size(357, 419), 0, 0, cv::INTER_NEAREST);
//cv::flip(matSrc1, matSrc1, 1);
cv::resize(matSrc, matSrc2, cv::Size(2177, 3233), 0, 0, cv::INTER_LANCZOS4); cv::Mat matDst1, matDst2; cv::resize(matSrc1, matDst1, cv::Size(8, 8), 0, 0, cv::INTER_CUBIC);
cv::resize(matSrc2, matDst2, cv::Size(8, 8), 0, 0, cv::INTER_CUBIC); cv::cvtColor(matDst1, matDst1, CV_BGR2GRAY);
cv::cvtColor(matDst2, matDst2, CV_BGR2GRAY); int iAvg1 = 0, iAvg2 = 0;
int arr1[64], arr2[64]; for (int i = 0; i < 8; i++)
{
uchar* data1 = matDst1.ptr<uchar>(i);
uchar* data2 = matDst2.ptr<uchar>(i); int tmp = i * 8; for (int j = 0; j < 8; j++)
{
int tmp1 = tmp + j; arr1[tmp1] = data1[j] / 4 * 4;
arr2[tmp1] = data2[j] / 4 * 4; iAvg1 += arr1[tmp1];
iAvg2 += arr2[tmp1];
}
} iAvg1 /= 64;
iAvg2 /= 64; for (int i = 0; i < 64; i++)
{
arr1[i] = (arr1[i] >= iAvg1) ? 1 : 0;
arr2[i] = (arr2[i] >= iAvg2) ? 1 : 0;
} int iDiffNum = 0; for (int i = 0; i < 64; i++)
if (arr1[i] != arr2[i])
++iDiffNum; cout<<"iDiffNum = "<<iDiffNum<<endl; if (iDiffNum <= 5)
cout<<"two images are very similar!"<<endl;
else if (iDiffNum > 10)
cout<<"they are two different images!"<<endl;
else
cout<<"two image are somewhat similar!"<<endl; getchar();
return 0;
}

一幅图片自己对比:

OpenCV进行图像相似度对比的几种办法

结果:

OpenCV进行图像相似度对比的几种办法

3.计算特征点

OpenCV的feature2d module中提供了从局部图像特征(Local image feature)的检测、特征向量(feature vector)的提取,到特征匹配的实现。其中的局部图像特征包括了常用的几种局部图像特征检测与描述算子,如FAST、SURF、SIFT、以及ORB。对于高维特征向量之间的匹配,OpenCV主要有两种方式:1)BruteForce穷举法;2)FLANN近似K近邻算法(包含了多种高维特征向量匹配的算法,例如随机森林等)。

feature2d module: http://docs.opencv.org/modules/features2d/doc/features2d.html

OpenCV FLANN: http://docs.opencv.org/modules/flann/doc/flann.html

FLANN: http://www.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN

原文:

http://blog.csdn.net/icvpr/article/details/8491369

//localfeature.h
#ifndef _FEATURE_H_
#define _FEATURE_H_ #include <iostream>
#include <vector>
#include <string> #include <opencv2/opencv.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/nonfree/nonfree.hpp>
#include <opencv2/nonfree/features2d.hpp>
using namespace cv;
using namespace std; class Feature
{
public:
Feature();
~Feature(); Feature(const string& detectType, const string& extractType, const string& matchType); public: void detectKeypoints(const Mat& image, vector<KeyPoint>& keypoints); // 检测特征点
void extractDescriptors(const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptor); // 提取特征向量
void bestMatch(const Mat& queryDescriptor, Mat& trainDescriptor, vector<DMatch>& matches); // 最近邻匹配
void knnMatch(const Mat& queryDescriptor, Mat& trainDescriptor, vector<vector<DMatch>>& matches, int k); // K近邻匹配 void saveKeypoints(const Mat& image, const vector<KeyPoint>& keypoints, const string& saveFileName = ""); // 保存特征点
void saveMatches(const Mat& queryImage,
const vector<KeyPoint>& queryKeypoints,
const Mat& trainImage,
const vector<KeyPoint>& trainKeypoints,
const vector<DMatch>& matches,
const string& saveFileName = ""); // 保存匹配结果到图片中 private:
Ptr<FeatureDetector> m_detector;
Ptr<DescriptorExtractor> m_extractor;
Ptr<DescriptorMatcher> m_matcher; string m_detectType;
string m_extractType;
string m_matchType; }; #endif //localfeature.cpp #include "stdafx.h"
#include "localfeature.h" Feature::Feature()
{
m_detectType = "SIFT";
m_extractType = "SIFT";
m_matchType = "BruteForce";
} Feature::~Feature()
{ } Feature::Feature(const string& detectType, const string& extractType, const string& matchType)
{
assert(!detectType.empty());
assert(!extractType.empty());
assert(!matchType.empty()); m_detectType = detectType;
m_extractType = extractType;
m_matchType = matchType;
} void Feature::detectKeypoints(const Mat& image, std::vector<KeyPoint>& keypoints)
{
assert(image.type() == CV_8UC1);
assert(!m_detectType.empty()); keypoints.clear(); initModule_nonfree(); m_detector = FeatureDetector::create(m_detectType);
m_detector->detect(image, keypoints); } void Feature::extractDescriptors(const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptor)
{
assert(image.type() == CV_8UC1);
assert(!m_extractType.empty()); initModule_nonfree();
m_extractor = DescriptorExtractor::create(m_extractType);
m_extractor->compute(image, keypoints, descriptor); } void Feature::bestMatch(const Mat& queryDescriptor, Mat& trainDescriptor, std::vector<DMatch>& matches)
{
assert(!queryDescriptor.empty());
assert(!trainDescriptor.empty());
assert(!m_matchType.empty()); matches.clear(); m_matcher = DescriptorMatcher::create(m_matchType);
m_matcher->add(std::vector<Mat>(1, trainDescriptor));
m_matcher->train();
m_matcher->match(queryDescriptor, matches); } void Feature::knnMatch(const Mat& queryDescriptor, Mat& trainDescriptor, std::vector<std::vector<DMatch>>& matches, int k)
{
assert(k > 0);
assert(!queryDescriptor.empty());
assert(!trainDescriptor.empty());
assert(!m_matchType.empty()); matches.clear(); m_matcher = DescriptorMatcher::create(m_matchType);
m_matcher->add(std::vector<Mat>(1, trainDescriptor));
m_matcher->train();
m_matcher->knnMatch(queryDescriptor, matches, k); } void Feature::saveKeypoints(const Mat& image, const vector<KeyPoint>& keypoints, const string& saveFileName)
{
assert(!saveFileName.empty()); Mat outImage;
cv::drawKeypoints(image, keypoints, outImage, Scalar(255,255,0), DrawMatchesFlags::DRAW_RICH_KEYPOINTS ); //
string saveKeypointsImgName = saveFileName + "_" + m_detectType + ".jpg";
imwrite(saveKeypointsImgName, outImage); } void Feature::saveMatches(const Mat& queryImage,
const vector<KeyPoint>& queryKeypoints,
const Mat& trainImage,
const vector<KeyPoint>& trainKeypoints,
const vector<DMatch>& matches,
const string& saveFileName)
{
assert(!saveFileName.empty()); Mat outImage;
cv::drawMatches(queryImage, queryKeypoints, trainImage, trainKeypoints, matches, outImage,
Scalar(255, 0, 0), Scalar(0, 255, 255), vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS); //
string saveMatchImgName = saveFileName + "_" + m_detectType + "_" + m_extractType + "_" + m_matchType + ".jpg";
imwrite(saveMatchImgName, outImage);
} // main.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h"
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/nonfree/nonfree.hpp>
#include <opencv2/nonfree/features2d.hpp> #include "localfeature.h" #pragma comment(lib,"opencv_core2410d.lib")
#pragma comment(lib,"opencv_highgui2410d.lib")
#pragma comment(lib,"opencv_imgproc2410d.lib")
#pragma comment(lib,"opencv_nonfree2410d.lib")
#pragma comment(lib,"opencv_features2d2410d.lib") using namespace std; int main(int argc, char** argv)
{
/*if (argc != 6)
{
cout << "wrong usage!" << endl;
cout << "usage: .exe FAST SIFT BruteForce queryImage trainImage" << endl;
return -1;
}*/ string detectorType = "SIFT";
string extractorType = "SIFT";
string matchType = "BruteForce";
string queryImagePath = "swan.jpg";
string trainImagePath = "swan.jpg"; Mat queryImage = imread(queryImagePath, CV_LOAD_IMAGE_GRAYSCALE);
if (queryImage.empty())
{
cout<<"read failed"<< endl;
return -1;
} Mat trainImage = imread(trainImagePath, CV_LOAD_IMAGE_GRAYSCALE);
if (trainImage.empty())
{
cout<<"read failed"<< endl;
return -1;
} Feature feature(detectorType, extractorType, matchType); vector<KeyPoint> queryKeypoints, trainKeypoints;
feature.detectKeypoints(queryImage, queryKeypoints);
feature.detectKeypoints(trainImage, trainKeypoints); Mat queryDescriptor, trainDescriptor; feature.extractDescriptors(queryImage, queryKeypoints, queryDescriptor);
feature.extractDescriptors(trainImage, trainKeypoints, trainDescriptor); vector<DMatch> matches;
feature.bestMatch(queryDescriptor, trainDescriptor, matches); vector<vector<DMatch>> knnmatches;
feature.knnMatch(queryDescriptor, trainDescriptor, knnmatches, 2); Mat outImage;
feature.saveMatches(queryImage, queryKeypoints, trainImage, trainKeypoints, matches, "../"); return 0;
}

两幅同样图片结果:

OpenCV进行图像相似度对比的几种办法

转载请注明出处:http://blog.csdn.net/wangyaninglm/article/details/51533549

来自:

shiter编写程序的艺术

OpenCV进行图像相似度对比的几种办法的更多相关文章

  1. Python OpenCV 图像相识度对比

    强大的openCV能做什么我就不啰嗦,你能想到的一切图像+视频处理. 这里,我们说说openCV的图像相似度对比, 嗯,说好听一点那叫图像识别,但严格讲, 图像识别是在一个图片中进行类聚处理,比如图片 ...

  2. 使用FaceNet 图像相识度对比

    1. 模型结构:

  3. 使用Python的PIL库做的图像相似度对比源码备份

    #!/usr/bin/python # Filename: histsimilar.py # -*- coding: utf-8 -*- import PIL.Image def make_regal ...

  4. 图像相似度计算之哈希值方法OpenCV实现

    http://blog.csdn.net/fengbingchun/article/details/42153261 图像相似度计算之哈希值方法OpenCV实现 2014-12-25 21:27 29 ...

  5. 深入学习OpenCV中图像灰度化原理,图像相似度的算法

    最近一段时间学习并做的都是对图像进行处理,其实自己也是新手,各种尝试,所以我这个门外汉想总结一下自己学习的东西,图像处理的流程.但是动起笔来想总结,一下却不知道自己要写什么,那就把自己做过的相似图片搜 ...

  6. 图片像素对比OpenCV实现,实现人工分割跟算法分割图像结果的对比

    图片对比,计算不同像素个数,已经比率.实现人工分割跟算法分割图像结果的对比,但是只能用灰度图像作为输入 // imageMaskComparison.cpp : 定义控制台应用程序的入口点. // / ...

  7. &lbrack;OpenCV-Python&rsqb; OpenCV 中图像特征提取与描述 部分 V &lpar;二&rpar;

    部分 V图像特征提取与描述 OpenCV-Python 中文教程(搬运)目录 34 角点检测的 FAST 算法 目标 • 理解 FAST 算法的基础 • 使用 OpenCV 中的 FAST 算法相关函 ...

  8. 图像相似度算法的C&num;实现及测评

    近日逛博客的时候偶然发现了一个有关图片相似度的Python算法实现.想着很有意思便搬到C#上来了,给大家看看. 闲言碎语 才疏学浅,只把计算图像相似度的一个基本算法的基本实现方式给罗列了出来,以至于在 ...

  9. Java基于opencv实现图像数字识别&lpar;五&rpar;—投影法分割字符

    Java基于opencv实现图像数字识别(五)-投影法分割字符 水平投影法 1.水平投影法就是先用一个数组统计出图像每行黑色像素点的个数(二值化的图像): 2.选出一个最优的阀值,根据比这个阀值大或小 ...

随机推荐

  1. PHP面试总结

    从8月15号来到北京一直到今天,一月有余.来的这段时间一直准备笔试面试,大大小小的公司,乱七八糟面了10多家,近期才安顿下来.面试的这段时间感觉自己成长了不少.初来到这个陌生的城市一脸茫然,不会乘地铁 ...

  2. Color Transfer between Images code实现

    上计算机视觉课老师布置的作业实现论文:Color Transfer between Images 基本思路是: 1.给定srcImg和targetImg 2.将RGB空间转为Lab空间 3.根据论文中 ...

  3. Mysql报错Fatal error&colon; Can&&num;39&semi;t open and lock privilege tables&colon; Table &&num;39&semi;mysql&period;host&&num;39&semi; doesn&&num;39&semi;t exist

    安装mysql后,启动时候没有启动成功,查看了下日志报错如下:---------------------------------------------1   可以:初始化mysql:mysql_in ...

  4. Node&period;js初探之hello world

    昨天公司内部培训,主讲人王老板对Node.js评价很高,连用几个“变态”来形容,恰好今天周末,有时间来认识下Node.js,对一门新语言最好的认识,是让其输出“hello world”,今天我就利用N ...

  5. python False

    None 空字符串 空列表 空元组 空字典 false为False

  6. spring多数据源配置

    项目中我们经常会遇到多数据源的问题,尤其是数据同步或定时任务等项目更是如此.多数据源让人最头痛的,不是配置多个数据源,而是如何能灵活动态的切换数据源.例如在一个spring和hibernate的框架的 ...

  7. 解决一个maven在eclipse中M2&lowbar;HOME不能调整的问题

    在坚持了许久之后,依然还是没能抵住maven的各种攻击,终于从0开始maven. 开始由于有关小项目,时间紧任务重,没仔细研究maven,便匆匆上手了,导致maven库的位置放在了c盘当前用户的数据目 ...

  8. VNC实现Windows远程访问Ubuntu 16&period;04(无需安装第三方桌面)

    本文主要是讲解如果理由VNC实现Windows远程访问Ubuntu 16.04,其实网上有很多类似教程,但是很多需要安装第三方桌面(xfce桌面等等),而且很多人不太喜欢安装第三方桌面,很多人像笔者一 ...

  9. X级联动

    前端数据 @{ ViewBag.Title = "Index"; } <script src="~/Scripts/jquery-1.10.2.js"&g ...

  10. 基于GTID环境的数据恢复

    下面说一个线上环境的数据恢复案例,线上环境误操作的事情,随时都有可能发生的,这时候运维DBA或者DBA会想,没人会傻到把数据库干掉的吧?又或者没有会闲得蛋痛删除了几条数据又想恢复这么无聊吧?适适这样的 ...