1 second
256 megabytes
standard input
standard output
DZY loves Fast Fourier Transformation, and he enjoys using it.
Fast Fourier Transformation is an algorithm used to calculate convolution. Specifically, if a, b and c are
sequences with length n, which are indexed from 0 to n - 1,
and
We can calculate c fast using Fast Fourier Transformation.
DZY made a little change on this formula. Now
To make things easier, a is a permutation of integers from 1 to n,
and b is a sequence only containing 0 and 1.
Given a and b, DZY needs your help to calculate c.
Because he is naughty, DZY provides a special way to get a and b.
What you need is only three integers n, d, x.
After getting them, use the code below to generate a and b.
//x is 64-bit variable;
function getNextX() {
x = (x * 37 + 10007) % 1000000007;
return x;
}
function initAB() {
for(i = 0; i < n; i = i + 1){
a[i] = i + 1;
}
for(i = 0; i < n; i = i + 1){
swap(a[i], a[getNextX() % (i + 1)]);
}
for(i = 0; i < n; i = i + 1){
if (i < d)
b[i] = 1;
else
b[i] = 0;
}
for(i = 0; i < n; i = i + 1){
swap(b[i], b[getNextX() % (i + 1)]);
}
}
Operation x % y denotes remainder after division x by y.
Function swap(x, y) swaps two values x and y.
The only line of input contains three space-separated integers n, d, x (1 ≤ d ≤ n ≤ 100000; 0 ≤ x ≤ 1000000006).
Because DZY is naughty, x can't be equal to 27777500.
Output n lines, the i-th line should contain an integer ci - 1.
3 1 1
1
3
2
5 4 2
2
2
4
5
5
5 4 3
5
5
5
5
4
In the first sample, a is [1 3 2], b is [1
0 0], so c0 = max(1·1) = 1, c1 = max(1·0, 3·1) = 3, c2 = max(1·0, 3·0, 2·1) = 2.
In the second sample, a is [2 1 4 5 3], b is [1
1 1 0 1].
In the third sample, a is [5 2 1 4 3], b is [1
1 1 1 0].
这题解法‘朴素’得难以置信
转载自http://codeforces.com/blog/entry/12959:
Firstly, you should notice that A, B are given randomly.
Then there're many ways to solve this problem, I just introduce one of them.
This algorithm can get Ci one
by one. Firstly, choose an s. Then check if Ci equals
to n, n - 1, n - 2... n - s + 1. If none of is the answer, just calculate Ci by
brute force.
The excepted time complexity to calculate Ci - 1 is
around
where .
Just choose an s to make the formula as small as possible. The worst excepted number of operations is around tens of million.
对于每次询问:
先暴力枚举,看看答案在不在[n-s+1,n]中
否则暴力。
复杂度=O(s+(tot'0'/i)^s*tot'1')
(tot'0'/i)^s表示[n,n-s+1]中没有答案
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXN (100000+10)
#define MAXX (1000000006+1)
#define N_MAXX (27777500)
long long mul(long long a,long long b){return (a*b)%F;}
long long add(long long a,long long b){return (a+b)%F;}
long long sub(long long a,long long b){return (a-b+(a-b)/F*F+F)%F;}
typedef long long ll;
ll n,d,x;
int i,a[MAXN],b[MAXN];
//x is 64-bit variable;
ll getNextX() {
x = (x * 37 + 10007) % 1000000007;
return x;
}
void initAB() {
for(i = 0; i < n; i = i + 1){
a[i] = i + 1;
}
for(i = 0; i < n; i = i + 1){
swap(a[i], a[getNextX() % (i + 1)]);
}
for(i = 0; i < n; i = i + 1){
if (i < d)
b[i] = 1;
else
b[i] = 0;
}
for(i = 0; i < n; i = i + 1){
swap(b[i], b[getNextX() % (i + 1)]);
}
} int q[MAXN]={0},h[MAXN]={0};
int main()
{
// freopen("FFT.in","r",stdin);
// freopen("FFT.out","w",stdout); cin>>n>>d>>x;
initAB(); Rep(i,n) if (b[i]) q[++q[0]]=i;
Rep(i,n) h[a[i]]=i; // Rep(i,n) cout<<a[i]<<' ';cout<<endl;
// Rep(i,n) cout<<b[i]<<' ';cout<<endl; Rep(i,n)
{
int s=30,ans=0;
Rep(j,30)
{
if (n-j<=0) break;
int t=h[n-j];
if (t<=i&&b[i-t]) {ans=n-j; break;}
}
if (!ans)
{
For(j,q[0])
{
int t=q[j];
if (t>i) break;
ans=max(ans,a[i-t]*b[t]);
}
} printf("%d\n",ans); } return 0;
}
版权声明:本文博主原创文章。博客,未经同意不得转载。