欧拉工程第65题:Convergents of e

时间:2023-03-09 22:25:16
欧拉工程第65题:Convergents of e

题目链接

现在做这个题目真是千万只*在心中路过

这个与上面一题差不多

这个题目是求e的第100个分数表达式中分子的各位数之和

What is most surprising is that the important mathematical constant,
e = [2; 1,2,1, 1,4,1, 1,6,1 , ... , 1,2k,1, ...].

The first ten terms in the sequence of convergents for e are:

2, 3, 8/3, 11/4, 19/7, 87/32, 106/39, 193/71, 1264/465, 1457/536, ...

The sum of digits in the numerator of the 10th convergent is 1+4+5+7=17.

Find the sum of digits in the numerator of the 100th convergent of the continued fraction for e.

上面可以发现一个规律

*链接:连分数,上面有递推公式

欧拉工程第65题:Convergents of e

这么多就足够解题了,

上面的定理1,用不到的

e = [2; 1,2,1, 1,4,1, 1,6,1 , ... , 1,2k,1, ...].

a0=2

下面的:1,2,1,1,4,1,1,6,1,这个规律很明显

 

根据上面的规律

Java代码:

package project61;

import java.math.BigInteger;

public class P65{
void run(){
BigInteger d = new BigInteger("1");
BigInteger n = new BigInteger("2");
for(int i= 2;i<=100;i++){
BigInteger temp = d;
long c = (i%3==0)?2*(i/3):1;
BigInteger BigC = new BigInteger(c+"");
d = n;
n = d.multiply(BigC).add(temp);
}
String toStr = n.toString();
int result = 0;
for(int i=0;i<toStr.length();i++){
result += Integer.valueOf(toStr.charAt(i)+"");
}
System.out.println(toStr+"\nresult:"+result);
}
public static void main(String[] args){
long start = System.currentTimeMillis();
new P65().run();
long end = System.currentTimeMillis();
long time = end - start;
System.out.println("run time:"+time/1000+"s"+time%1000+"ms");
}
}

如果刚看到这一题的时候应该感觉这个数不是很大,然而分子是:6963524437876961749120273824619538346438023188214475670667

分子各位的数字和是:272,要用BigInteger类型

Python程序:

import time as time 

def mysum(num):
return sum(map(int,str(num))) def getA(i):
if i%3==0:
return 2*(i/3)
else:
return 1 def run():
h0 = 1
h1 = 2
for i in range(2,101):
a = getA(i)
h2 = a * h1 + h0
h0 = h1
h1 = h2
return mysum(h2) if __name__== '__main__':
start = time.time()
result = run()
print "running time={0},result={1}".format((time.time()-start),result)

Python是根据上面截图中的写的

running time=0.0,result=272