一、gym中所有可以用的模拟环境
from gym import envs
for env in ():
print()
二、环境展示
import gym
env = ('Pendulum-v0')
for i_episode in range(20):
observation = ()
for t in range(100):
()
print(observation)
action = env.action_space.sample()
observation, reward, done, info = (action)
if done:
print("Episode finished after {} timesteps".format(t+1))
break
()
三、其他环境参数
import gym
env = ('Pendulum-v0').unwrapped
print(env.action_space) # 输出动作信息
#print(env.action_space.n) # 输出动作个数
print(env.observation_space) # 查看状态空间
print(env.observation_space.shape[0]) # 输出状态个数
print(env.observation_space.high) # 查看状态的最高值
print(env.observation_space.low) # 查看状态的最低值
四、各类环境
经典控制环境Classic control:入门
算法学习环境Algorithms
2D仿真环境Box2D
Mujoco环境
Atari
文本游戏环境Toy text
五、官网提供
gym入门、环境鸟瞰图:Gym
环境脚本:gym/gym/envs/classic_control at master · openai/gym · GitHub