1017 - Exact cover
时间限制:15秒 内存限制:128兆
自定评测 5584 次提交 2975 次通过
- 题目描述
- There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is a selection of rows such that every column has a 1 in exactly one of the selected rows. Try to find out the selected rows.
- 输入
- There are multiply test cases. First line: two integers N, M; The following N lines: Every line first comes an integer C(1 <= C <= 100), represents the number of 1s in this row, then comes C integers: the index of the columns whose value is 1 in this row.
- 输出
- First output the number of rows in the selection, then output the index of the selected rows. If there are multiply selections, you should just output any of them. If there are no selection, just output "NO".
- 样例输入
-
6 7
3 1 4 7
2 1 4
3 4 5 7
3 3 5 6
4 2 3 6 7
2 2 7 - 样例输出
-
3 2 4 6
题目链接:http://acm.hust.edu.cn/problem/show/1017
精确覆盖入门题。
Dancing Links 就是一种加快搜索速度的方法,采用四向链表。
/* ***********************************************
Author :kuangbin
Created Time :2014/5/25 22:55:25
File Name :E:\2014ACM\专题学习\DLX\HUST1017.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
const int maxnode = ;
const int MaxM = ;
const int MaxN = ;
struct DLX
{
int n,m,size;
int U[maxnode],D[maxnode],R[maxnode],L[maxnode],Row[maxnode],Col[maxnode];
int H[MaxN], S[MaxM];
int ansd, ans[MaxN];
void init(int _n,int _m)
{
n = _n;
m = _m;
for(int i = ;i <= m;i++)
{
S[i] = ;
U[i] = D[i] = i;
L[i] = i-;
R[i] = i+;
}
R[m] = ; L[] = m;
size = m;
for(int i = ;i <= n;i++)
H[i] = -;
}
void Link(int r,int c)
{
++S[Col[++size]=c];
Row[size] = r;
D[size] = D[c];
U[D[c]] = size;
U[size] = c;
D[c] = size;
if(H[r] < )H[r] = L[size] = R[size] = size;
else
{
R[size] = R[H[r]];
L[R[H[r]]] = size;
L[size] = H[r];
R[H[r]] = size;
}
}
void remove(int c)
{
L[R[c]] = L[c]; R[L[c]] = R[c];
for(int i = D[c];i != c;i = D[i])
for(int j = R[i];j != i;j = R[j])
{
U[D[j]] = U[j];
D[U[j]] = D[j];
--S[Col[j]];
}
}
void resume(int c)
{
for(int i = U[c];i != c;i = U[i])
for(int j = L[i];j != i;j = L[j])
++S[Col[U[D[j]]=D[U[j]]=j]];
L[R[c]] = R[L[c]] = c;
}
//d为递归深度
bool Dance(int d)
{
if(R[] == )
{
ansd = d;
return true;
}
int c = R[];
for(int i = R[];i != ;i = R[i])
if(S[i] < S[c])
c = i;
remove(c);
for(int i = D[c];i != c;i = D[i])
{
ans[d] = Row[i];
for(int j = R[i]; j != i;j = R[j])remove(Col[j]);
if(Dance(d+))return true;
for(int j = L[i]; j != i;j = L[j])resume(Col[j]);
}
resume(c);
return false;
}
}; DLX g;
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n,m;
while(scanf("%d%d",&n,&m) == )
{
g.init(n,m);
for(int i = ;i <= n;i++)
{
int num,j;
scanf("%d",&num);
while(num--)
{
scanf("%d",&j);
g.Link(i,j);
}
}
if(!g.Dance())printf("NO\n");
else
{
printf("%d",g.ansd);
for(int i = ;i < g.ansd;i++)
printf(" %d",g.ans[i]);
printf("\n");
}
}
return ;
}