http://poj.org/problem?id=1201
题意:给出N个整数区间[ai,bi],并且给出一个约束ci,( 1<= ci <= bi-ai+1),使得数组Z在区间[ai,bj]的个数>= ci个,求出数组Z的最小长度。
思路:建立差分约束系统。因为这里要求数组长度的最小值,要变为 x-y>=k的标准形式。
设数组 s[j] 表示数组 Z 区间[0,j]里包含的元素个数。所以 s[bi+1] - s[ai] >= ci,注意是 j+1,
隐含条件 0 <= s[i+1]-s[i] <= 1;
故差分约束系统为:
s[bi+1] - s[ai] >= ci;
s[i+1] - s[i] >= 0;
s[i] - s[i+1] >= -1;
然后邻接表建图求最长路。
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stack>
using namespace std; const int maxn = ;
const int INF = 0x3f3f3f3f;
struct node
{
int u,v,w;
int next;
}edge[maxn]; int n,p[maxn],cnt;
int Min,Max;
int dis[maxn],instack[maxn],vexcnt[maxn]; void add(int u, int v, int w)
{
cnt++;
edge[cnt].u = u;
edge[cnt].v = v;
edge[cnt].w = w;
edge[cnt].next = p[u];
p[u] = cnt;
} bool SPFA()
{
stack<int>st;
while(!st.empty()) st.pop();
memset(instack,,sizeof(instack));
memset(vexcnt,,sizeof(vexcnt));
for(int i = Min; i <= Max; i++)
dis[i] = -INF; st.push(Min);
dis[Min] = ;
instack[Min] = ;
vexcnt[Min]++; while(!st.empty())
{
int u = st.top();
st.pop();
instack[u] = ; for(int i = p[u]; i; i = edge[i].next)
{
if(dis[edge[i].v] < dis[u] + edge[i].w)
{
dis[edge[i].v] = dis[u] + edge[i].w;
if(!instack[edge[i].v])
{
instack[edge[i].v] = ;
st.push(edge[i].v);
vexcnt[edge[i].v]++;
if(vexcnt[edge[i].v] > n)
return false;
}
}
}
}
return true;
} int main()
{
int u,v,w;
scanf("%d",&n); cnt = ;
memset(p,,sizeof(p));
Min = INF,Max = -; for(int i = ; i < n; i++)
{
scanf("%d %d %d",&u,&v,&w);
add(u,v+,w);
Min = min(Min,u);
Max = max(Max,v+);
}
for(int i = Min; i < Max; i++)
{
add(i,i+,);
add(i+,i,-);
}
SPFA();
printf("%d\n",dis[Max]-dis[Min]);
return ;
}
关于差分约束:
比如给出三个不等式,b-a<=k1,c-b<=k2,c-a<=k3,求出c-a的最大值,我们可以把a,b,c转换成三个点,k1,k2,k3是边上的权,如图
由题我们可以得知,这个有向图中,由题b-a<=k1,c-b<=k2,得出c-a<=k1+k2,因此比较k1+k2和k3的大小,求出最小的就是c-a的最大值了
根据以上的解法,我们可能会猜到求解过程实际就是求从a到c的最短路径,没错的....简单的说就是从a到c沿着某条路径后把所有权值和k求出就是c -a<=k的一个
推广的不等式约束,既然这样,满足题目的肯定是最小的k,也就是从a到c最短距离...
理解了这里之后,想做题还是比较有困难的,因为题目需要变形一下,不能单纯的算..
首先以poj3159为例,这个比较简单,就是给出两个点的最大差,然后让你求1到n的最大差,直接建图后用bellman或者spfa求最短路就可以过了
稍微难点的就是poj1364,因为他给出的不等式不是x-y<=k形式,有时候是大于号,这样需要我们去变形一下,并且给出的还是>,<没有等于,都要变形
再有就是poj1201,他要求出的是最长距离,那就要把形式变换成x-y>=k的标准形式
注意点:
1. 如果要求最大值想办法把每个不等式变为标准x-y<=k的形式,然后建立一条从y到x权值为k的边,变得时候注意x-y<k =>x-y<=k-1
如果要求最小值的话,变为x-y>=k的标准形式,然后建立一条从y到x的k边,求出最长路径即可
2.如果权值为正,用dj,spfa,bellman都可以,如果为负不能用dj,并且需要判断是否有负环,有的话就不存在