【POJ2778】DNA Sequence 【AC自动机,dp,矩阵快速幂】

时间:2023-03-09 19:46:11
【POJ2778】DNA Sequence 【AC自动机,dp,矩阵快速幂】

题意

题目给出m(m<=10)个仅仅由A,T,C,G组成的单词(单词长度不超过10),然后给出一个整数n(n<=2000000000),问你用这四个字母组成一个长度为n的长文本,有多少种组成方法可以使得它不含任何一个给出的单词。

分析

当时一看以为是跟训练指南上(UVA11468)一样的题,感觉只有四个字母并且单词数量和长度也比较小,但是一看给出的n有点懵逼。如果再按照书上建立AC自动机以后直接跑DP的方法肯定是不行了。然后我们就要用到,递推利器,矩阵快速幂。

我们还是按照套路先把AC自动机建出来,然后将每个单词结点设为非法结点,题目变成在AC自动机中走n步不通过非法结点的方案数。然后设f[i][j]是当前在结点i,已经走了j步,且未走过非法结点的方案数。然后怎么转移呢?

f[i][j]=A(0,i)*f[0][j-1]+A(1,i)*f[1][j-1]+...+A(sz-1,i)f[sz-1][j-1]。其中A(i,j)的含义就是从i到j有几条直接连接的边。那么将这个dp方程拆开来看

f0[i]=A(0,0)*f[0][i-1]+A(1,0)*f[1][i-1]+....+A(sz-1,0)*fsz-1[i-1]

f1[i]=A(0,1)*f[0][i-1]+A(1,1)*f[1][i-1]+....+A(sz-1,1)*fsz-1[i-1]

.

.

fsz-1[i]=A(0,sz-1)*f[0][i-1]+A(1,sz-1)*f[1][i-1]+...+A(sz-1,sz-1)*fsz-1[i-1]

然后根据这个我们就很好建立转移矩阵

【POJ2778】DNA Sequence 【AC自动机,dp,矩阵快速幂】*【POJ2778】DNA Sequence 【AC自动机,dp,矩阵快速幂】

(第一次学会用公式编辑器不过好像还是贼丑)

然后建立这个大的转移矩阵,矩阵的(i,j)为结点i到结点j的直接路径的条数,然后跑一个矩阵快速幂。

最后把从0到sz-1结点的f(n)的值全部加起来就是答案了。

对了这个题需要用long long

下面是代码

 #include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <queue>
#include <map> using namespace std;
const int maxnode=;
const int MOD=;
map<char,int>M;
struct AC_Automata{
int ch[maxnode][],f[maxnode],last[maxnode],val[maxnode],match[maxnode];
int sz;
int idx(char c){
return M[c];
}
void init(){
sz=;
memset(ch[],,sizeof(ch[]));
memset(match,,sizeof(match));
val[]=;
}
void insert(char *s){
int n=strlen(s),u=;
for(int i=;i<n;i++){
int c=idx(s[i]);
if(!ch[u][c]){
ch[u][c]=sz;
memset(ch[sz],,sizeof(ch[sz]));
val[sz++]=;
}
u=ch[u][c];
}
val[u]=;
match[u]=;
}
void getFail(){
queue<int>q;
last[]=f[]=;
for(int i=;i<;i++){
int u=ch[][i];
if(u){
q.push(u);
f[u]=last[u]=;
}
}
while(!q.empty()){
int r=q.front();q.pop();
for(int i=;i<;i++){
int u=ch[r][i];
if(!u){
ch[r][i]=ch[f[r]][i];
continue;
}
q.push(u);
int v=f[r];
while(v&&!ch[v][i])v=f[v];
f[u]=ch[v][i];
match[u]|=match[f[u]];
}
}
}
}ac;
const int maxN=;
struct Matrix{
long long a[maxN][maxN];
void init(){
memset(a,,sizeof(a));
for(int i=;i<ac.sz;i++)
a[i][i]=;
}
};
Matrix mul(Matrix a,Matrix b){
Matrix res;
for(int i=;i<ac.sz;i++){
for(int j=;j<ac.sz;j++){
res.a[i][j]=;
for(int k=;k<ac.sz;k++){
res.a[i][j]+=a.a[i][k]*b.a[k][j];
res.a[i][j]%=MOD;
}
}
}
return res;
}
Matrix qpow(Matrix a,int k){
Matrix res;
res.init();
while(k){
if(k%)res=mul(res,a);
a=mul(a,a);
k/=;
}
return res;
}
int n,m;
char s[]; int main(){
M['A']=,M['C']=,M['T']=,M['G']=;
ac.init();
scanf("%d%d",&m,&n);
for(int i=;i<=m;i++){
scanf("%s",s);
ac.insert(s);
}
ac.getFail();
Matrix A;
for(int i=;i<ac.sz;i++){
if(!ac.match[i])
for(int j=;j<;j++){
int u=ac.ch[i][j];
if(!ac.match[u])
A.a[i][u]++;
}
}
/*for(int i=0;i<ac.sz;i++){
for(int j=0;j<ac.sz;j++){
printf("%d ",A.a[i][j]);
}
printf("\n");
}*/ Matrix S;
S.a[][]=;
Matrix ANS;
ANS=qpow(A,n);
ANS=mul(S,ANS);
long long ans=;
for(int i=;i<=ac.sz;i++)
ans+=ANS.a[][i];
printf("%d\n",ans%MOD);
return ;
}