opencv之从视频帧中截取图片

时间:2023-03-09 19:22:41
opencv之从视频帧中截取图片

最近在训练一个人脸识别的模型,而项目训练需要大量真实人脸图片样本。

刚好项目用到opencv识别人脸,可以把每一帧图片保存下来,用此方法可以方便的获取大量的脸部样本,大约20分钟可以获取到10000张.

#-*- encoding:utf8 -*-
import cv2
import os
import sys
import random
# 获取分类器
classifier = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
face_dir = './my_faces'
if not os.path.exists(face_dir):
os.makedirs(face_dir)
name=raw_input("please input your name:")
os.makedirs(face_dir+'/'+name) # 打开摄像头 参数为输入流,可以为摄像头或视频文件
camera = cv2.VideoCapture(0) # 改变亮度与对比度
def relight(img, alpha=1, bias=0):
w = img.shape[1]
h = img.shape[0]
#image = []
for i in range(0,w):
for j in range(0,h):
for c in range(3):
tmp = int(img[j,i,c]*alpha + bias)
if tmp > 255:
tmp = 255
elif tmp < 0:
tmp = 0
img[j,i,c] = tmp
return img
i = 1
while 1:
if (i <= 10000):
print('It`s processing %s image.' % i)
success, img = camera.read() # 读帧
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)#转灰度图
faces = classifier.detectMultiScale(gray_img, 1.3, 5)#用分类器获取脸部
for f_x, f_y, f_w, f_h in faces:#截取原来图像的脸部
face = img[f_y:f_y+f_h, f_x:f_x+f_w]
face = cv2.resize(face, (128,128))
face = relight(face, random.uniform(0.5, 1.5), random.randint(-50, 50))#重新调亮度
cv2.imwrite(face_dir+'/'+name+'/'+str(i)+'.jpg', face)
i+=1
key = cv2.waitKey(10)
c = chr(key & 255)
if c in ['q', 'Q', chr(27)]:
break
else:
break