欧几里得算法
package euclidean_algorithm;
import java.util.Scanner;
/**
* @author ALazy_cat
* 欧几里得算法的自然语言描述:
* 计算两个非负整数x和y的最大公约数: 若y = 0,则最大公约数为x; 否则将remainder = x % y,x和y的
* 最大公约数即为y和remainder的最大公约数
*/
public class EuclideanAlgorithm {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
System.out.print("请输入两个整数: ");
int x = 0, y = 0;
x = in.nextInt();
y = in.nextInt();
System.out.println("x, y的最大公约数是: " + euclideanAlgorithm_01(x, y, 1));
System.out.println("---------------------");
System.out.println("x, y的最大公约数是: " + euclideanAlgorithm_02(x, y, 1));
}
//欧几里得算法的递归实现
public static int euclideanAlgorithm_01(int x, int y, int count) {
//当y = 0时,递归结束
int remainder = 0;
System.out.println("第" + count++ + "次递归: " + "x = " + x + " , " + "y = " + y);
if (y == 0)
return x;
remainder = x % y;
return euclideanAlgorithm_01(y, remainder, count);
}
//欧几里得算法的循环实现
public static int euclideanAlgorithm_02(int x, int y, int count) {
int remainder = 0;
while (y != 0) {
System.out.println("第" + count++ + "次循环: " + "x = " + x + " , " + "y = " + y);
remainder = x % y;
x = y;
y = remainder;
}
System.out.println("第" + count++ + "次循环: " + "x = " + x + " , " + "y = " + y);
return x;
}
}