拓展欧几里得求 ax + by = c的通解(a >=0, b >= 0)

时间:2023-03-09 17:11:34
拓展欧几里得求 ax + by = c的通解(a >=0, b >= 0)
 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <vector> using namespace std; #define ll long long // 题目:给定三种物品的价格A,B,C和拥有的钱P(C / gcd(A, B, C) >= 200)
// 求解 AX + BY + CZ = P的解个数(case = 100)
// A, B, C, P ∈ [0, 100000000] // 解:
// AX + BY = P - CZ (C >= 200 -> Z <= 1e8 / 200 = 5e5)
// 复杂度O(case * 5e5 * log(1e8)) const int INF = 1e9;
const ll MOD = ;
ll a, b, c, p, x, y, gcd_ab; ll exgcd(ll a, ll b, ll &x, ll &y)
{ if(b == ){//推理1,终止条件
x = ;
y = ;
return a;
}
ll r = exgcd(b, a%b, x, y);
//先得到更底层的x2,y2,再根据计算好的x2,y2计算x1,y1。
//推理2,递推关系
ll t = y;
y = x - (a/b) * y;
x = t;
return r;
} ll fun(ll n)
{
if(n % gcd_ab) return ;
ll tim = n / gcd_ab;
ll xx, yy;
// a * (tim * x) + b * (tim * y) = gcd(a, b) * tim = n;
xx = x * tim;
yy = y * tim;
ll k, k1, k2;
//a * (xx + F) + b * (yy + G) = n
// Fa + Gb = 0
// F = lcm(a, b) / a * t
// G = lcm(a, b) / g * t
k1 = b / gcd_ab;
k2 = a / gcd_ab; if(xx < ){
k = -(xx / k1) + (xx % k1 != );
xx += k * k1; yy -= k * k2;
}
if(yy < ){
k = -(yy / k2) + (yy % k2 != );
xx -= k * k1; yy += k * k2;
} //cout << "aa = " << aa << " bb = " << bb << endl;
ll x1, x2, y1, y2;
if(xx < || yy < ) return ;
k = xx / k1;
xx -= k * k1;
yy += k * k2;
x1 = xx, y1 = yy;
k = yy / k2;
xx += k * k1;
yy -= k * k2;
x2 = xx, y2 = yy;
y2 = y2 - k * k2;
//x1 + (x2 - x1) / k1 = x2
return (x2 - x1) / k1 + ;
} void solve()
{ int T, _case = ;
cin >> T;
while(T--){ cin >> a >> b >> c >> p;
//ax + by = gcd(a, b)
gcd_ab = exgcd(a, b, x, y);
//cout << x << " " << y << endl;
ll ways = ;
for(ll i = ; p - c * i >= ; ++i){
ways += fun(p - c * i);
//cout << "ways = " << ways << endl;
} cout << "Case " << ++_case << ": " << ways << endl;
}
} int main()
{ solve(); //cout << "ok" << endl; return ;
}