思路:dp(i, j)表示用金钱j去买前i个物品能得到的最大价值。转移方程dp(i, j) = max{dp(i-1, j), dp(i-1, j-p[i]) + p[i]*w[i]}.
AC代码
#include <cstdio> #include <cmath> #include <cctype> #include <algorithm> #include <cstring> #include <utility> #include <string> #include <iostream> #include <map> #include <set> #include <vector> #include <queue> #include <stack> using namespace std; #pragma comment(linker, "/STACK:1024000000,1024000000") #define eps 1e-10 #define inf 0x3f3f3f3f #define PI pair<int, int> typedef long long LL; const int maxn = 3e4 + 5; int dp[maxn], p[30], w[30]; int main() { int T, V, n; scanf("%d", &T); while(T--) { scanf("%d%d", &V, &n); for(int i = 1; i <= n; ++i) scanf("%d%d", &p[i], &w[i]); memset(dp, 0, sizeof(dp)); for(int i = 1; i <= n; ++i) { for(int j = V; j >= 0; --j) { if(j >= p[i]) dp[j] = max(dp[j], dp[j-p[i]] + w[i]*p[i]); } } printf("%d\n", dp[V]); } return 0; }
如有不当之处欢迎指出!