pipelinedb--流、滑动窗口测试

时间:2023-03-09 14:16:33
pipelinedb--流、滑动窗口测试

https://blog.****.net/liuxiangke0210/article/details/74010951

https://yq.aliyun.com/articles/166

一、pipelineDB默认的用户不是postgres而是pipeline。

pipeline=# \c
You are now connected to database "pipeline" as user "steven".

  

进入数据库 命令:pipeline  pipeline

[steven@steven1 ~]$ pipeline pipeline
pipeline (9.5.3)
Type "help" for help. pipeline=#

  

创建一个流 stream,一个stream就是一个FDW,其实不存储任何数据。

pipeline=# create stream stream_test(x integer, y integer, z text);
CREATE FOREIGN TABLE

查看流结构

pipeline=# \d stream_test;
Foreign table "public.stream_test"
Column | Type | Modifiers | FDW Options
-------------------+--------------------------+-----------+-------------
x | integer | |
y | integer | |
z | text | |
arrival_timestamp | timestamp with time zone | |
Server: pipelinedb

  

  

创建一个CONTINUOUS 连续视图

pipeline=# create continuous view v_sum as select sum (x + y) from stream_test;
CREATE VIEW
pipeline=# create continuous view v_group as select count(*) as coun,x,y,z from stream_test group by x,y,z;
CREATE VIEW

pipeline=# create continuous view v_single as select x,z from stream_test;
CREATE VIEW

  

  

stream 只能被continuous查询,如果直接查询会报错,被告知只能被continous view读取。

查看continues  views结构

pipeline=# \d v_group
View "public.v_group"
Column | Type | Modifiers
--------+---------+-----------
coun | bigint |
x | integer |
y | integer |
z | text |
pipeline=# \d v_single
View "public.v_single"
Column | Type | Modifiers
--------+---------+-----------
x | integer |
z | text |

  

创建好continuous,会附带创建一些别的东西。

pipeline=# \d
List of relations
Schema | Name | Type | Owner
--------+------------------+---------------+--------
public | v | view | steven
public | v_group | view | steven
public | v_group_mrel | table | steven
public | v_group_osrel | foreign table | steven
public | v_group_seq | sequence | steven
public | v_mrel | table | steven
public | v_osrel | foreign table | steven
public | v_seq | sequence | steven
public | v_single | view | steven
public | v_single_mrel | table | steven
public | v_single_osrel | foreign table | steven
public | v_single_seq | sequence | steven
public | v_sum | view | steven
public | v_sum_mrel | table | steven
public | v_sum_osrel | foreign table | steven
public | v_sum_seq | sequence | steven
(34 rows)

v_group  这个跟数据库中普通的View很类似,不存储任何东西,可以把他理解成一个materialized view,并且是非常高吞吐量,realtime的物化视图。

*_mrel,这个就是存储具体数据的,跟pg中的物理表是一样一样的。上面的cv就是这个物理表的一个壳子,不过这个物理表存储的内容可能是HLL格式。

*_seq,这个是给物理表创建的一个PK,看看cv_mrel发现默认会有个$pk字段。

*cv_osrel  这个是internal relation representing an output stream

插入数据到stream

pipeline=# insert into stream_test (x,y,z) values(1,2,'a'),(3,4,'b'),(5,6,'c'),(7,8,'d'),(1,2,'a');
INSERT 0 5

  

查询

pipeline=# select * from v_sum;
sum
-----
39
(1 row) pipeline=# select * from v_group;
coun | x | y | z
------+---+---+---
1 | 7 | 8 | d
1 | 5 | 6 | c
2 | 1 | 2 | a
1 | 3 | 4 | b
(4 rows)
pipeline=# select * from v_group_mrel;
coun | x | y | z | $pk
------+---+---+---+-----
1 | 7 | 8 | d | 1
1 | 5 | 6 | c | 2
2 | 1 | 2 | a | 3
1 | 3 | 4 | b | 4
(4 rows)

cv跟cv_mrel只是多了个$pk,这是在普通情况下,数据是这样的,如果做agg可能数据存储为HLL格式.

滑动窗口

我们来看看滑动窗口,在流计算中,窗口是个很重要的东西,例如最近5分钟,最近1小时,最近1天的汇总。  

1、创建一个流,列名time,数据类型timestamp;

pipeline=# create stream sliding (time timestamp);

  

2、创建一个滑动窗口(流动视图)

pipeline=# create continuous view cv_sliding with(sw='1 minute') as select time from sliding;
CREATE VIEW

  

3、插入一条当前时间数据

pipeline=# insert into sliding(time) values(now());
INSERT 0 1

  

4、查询

pipeline=# select * from cv_sliding;
time
----------------------------
2018-05-18 08:46:58.771057
(1 row)

  

5、过一会再插入两条时间数据,再次查询

pipeline=# insert into sliding(time) values(now());
INSERT 0 1
pipeline=# insert into sliding(time) values(now());
INSERT 0 1

  

pipeline=# select * from cv_sliding;
time
----------------------------
2018-05-18 08:46:58.771057
2018-05-18 08:47:22.253052
2018-05-18 08:47:29.265144
(3 rows)

  可以看到三条数据

6、过一会查询,少了一条,再过一会全部消失

pipeline=# select * from cv_sliding;
time
----------------------------
2018-05-18 08:47:22.253052
2018-05-18 08:47:29.265144
(2 rows)

  

pipeline=# select * from cv_sliding;
time
------
(0 rows)

  

ttl功能

pipeline=# create continuous view v_ttl with (ttl = '10 minute',ttl_column= 'minute') as select minute(arrival_timestamp), count(*) from sliding group by minute;
CREATE VIEW

  

pipeline=# insert into sliding values(now());
INSERT 0 1
pipeline=# insert into sliding values(now());
INSERT 0 1
pipeline=# insert into sliding values(now());
INSERT 0 1
pipeline=# insert into sliding values(now());
INSERT 0 1 pipeline=# select * from v_ttl;
minute | count
------------------------+-------
2018-05-18 09:04:00+00 | 4

  

pipeline=# insert into sliding values(now());
INSERT 0 1
pipeline=# select * from v_ttl;
minute | count
------------------------+-------
2018-05-18 09:04:00+00 | 4
2018-05-18 09:06:00+00 | 1
(2 rows)

  

transform

1、创建流和相对应的流动视图

pipeline=# create stream str1(x bigint,y text,z timestamp);
CREATE FOREIGN TABLE
pipeline=# create stream str2(x bigint,y text,z timestamp);
CREATE FOREIGN TABLE
pipeline=# create continuous view cv_1 as select x,y,z from str1;
CREATE VIEW
pipeline=# create continuous view cv_2 as select x,y,z from str2;
CREATE VIEW
pipeline=#

  

2、创建transform

pipeline=# create continuous transform tran_1 as select x,y,z from str1 then execute procedure pipeline_stream_insert('str2');
CREATE VIEW
pipeline=# insert into str1(x,y,z) values(1,'hi,i from str1',now());
INSERT 0 1
pipeline=# select * from cv_1;
x | y | z
---+----------------+---------------------------
1 | hi,i from str1 | 2018-05-18 09:21:01.11329
(1 row) pipeline=# select * from cv_2;
x | y | z
---+----------------+---------------------------
1 | hi,i from str1 | 2018-05-18 09:21:01.11329
(1 row)

  

在创建Transform用到的pipeline_stream_insert是PipelineDB自己提供的一个函数,这个我们可以自己定义一个函数。

pipeline=# create table t(x bigint,y text,z timestamp);

CREATE TABLE

pipeline=# CREATE OR REPLACE FUNCTION insert_into_t()

pipeline-#   RETURNS trigger AS

pipeline-#   $$

pipeline$#   BEGIN

pipeline$#     INSERT INTO t (x, y,z) VALUES (NEW.x, NEW.y,NEW.z);

pipeline$#     RETURN NEW;

pipeline$#   END;

pipeline$#   $$

pipeline-#   LANGUAGE plpgsql;

CREATE FUNCTION

pipeline=# CREATE CONTINUOUS TRANSFORM tran_t AS

pipeline-#   SELECT x,y,z FROM str1

pipeline-#   THEN EXECUTE PROCEDURE insert_into_t();

CREATE CONTINUOUS TRANSFORM

pipeline=# insert into str1(x,y,z) values(10,'I want insert table t',now());

INSERT 0 1

pipeline=# select * from t;

 x  |           y           |             z

----+-----------------------+---------------------------

 10 | I want insert table t | 2017-05-15 14:01:48.17516

(1 row)

自己写了一个trigger,然后把数据插入到表T中。