155. Min Stack

时间:2023-03-09 09:19:57
155. Min Stack

题目:

Design a stack that supports push, pop, top, and retrieving the minimum element in constant time.

  • push(x) -- Push element x onto stack.
  • pop() -- Removes the element on top of the stack.
  • top() -- Get the top element.
  • getMin() -- Retrieve the minimum element in the stack.

链接: http://leetcode.com/problems/min-stack/

题解:

最小栈。这道题在电面Bloomberg的supply chain组的Senior SDE时遇到了原题,秒杀掉了。然后面试的老印很坏,follow up说你这个不是stack, 说想要new stack<>()的时候自带min功能,跟我绕了半天,故意误导, 好恶心...最后果然电面没过-_____-!! 后来看了CC150, 才知道这老印也许想要的是CC150的写法 - MinStack extends Stack<Integer>, 然后用minStack和super进行互动,也是两个栈。

又聊远了,这道题目,保持stack的功能同时还要有getMin()。一般的方法是维护两个stack。 也可以维护一个stack,但要创建一个Node class,空间复杂度并不能被节省。 还有的做法是用一个stack,stack里存min到当前值x的距离,然后有些计算,比较巧妙。

维护两个stack, Time Complexity (pop,push,getMin,top) - O(1) , Space Complexity - O(n)。

class MinStack {
private Stack<Integer> stack = new Stack<>();
private Stack<Integer> minStack = new Stack<>(); public void push(int x) {
if(minStack.isEmpty() || x <= minStack.peek())
minStack.push(x);
stack.push(x);
} public void pop() {
if(stack.peek().equals(minStack.peek()))
minStack.pop();
stack.pop();
} public int top() {
return stack.peek();
} public int getMin() {
return minStack.peek();
}
}

维护一个栈,  Time Complexity (pop,push,getMin,top) - O(1) , Space Complexity - O(n)。

class MinStack {
private Stack<Node> stack; public MinStack() {
this.stack = new Stack<>();
} public void push(int x) {
int min = Math.min(x, getMin());
this.stack.push(new Node(x, min));
} public void pop() {
this.stack.pop();
} public int top() {
return this.stack.peek().val;
} public int getMin() {
if(this.stack.isEmpty())
return Integer.MAX_VALUE;
return this.stack.peek().min;
} private class Node {
public int min;
public int val; public Node(int val, int min) {
this.val = val;
this.min = min;
}
}
}

二刷:

除了维护两个栈的方法以外,还有两种方法, 一种是建立一个Node同时保存当前值和最小值。

另外一种是reeclapple的写法。

  1. 设定一个min,push的时候,除了第一个数外,只把每个数x和min的差值(x - min)存入栈。当 x< min的时候更新min = x
  2. pop的时候pop出这个差值,假如这个值小于0,我们更新min = min - pop,否则min不变
  3. 计算peek的时候,先peek出栈顶元素, 假如这个元素top大于0,那么返回  top + min, 否则返回min。这里理解比较tricky.
  4. 计算getMin的时候直接返回min

Java:

最简单的维护两个stack的。

class MinStack {
private Stack<Integer> minStack = new Stack<>();
private Stack<Integer> stack = new Stack<>(); public void push(int x) {
stack.push(x);
if (minStack.isEmpty() || x <= minStack.peek()) {
minStack.push(x);
}
} public void pop() {
int x = stack.pop();
if (x == minStack.peek()) {
minStack.pop();
}
} public int top() {
return stack.peek();
} public int getMin() {
return minStack.peek();
}
}

三刷:

要注意假如遇到的话,还要加上各种边界条件判断以及throw EmptyStackException

Java:

class MinStack {
private Stack<Integer> stack = new Stack<>();
private Stack<Integer> minStack = new Stack<>(); public void push(int x) {
stack.push(x);
if (minStack.isEmpty() || x <= minStack.peek()) minStack.push(x);
} public void pop() {
int x = stack.pop();
if (x == minStack.peek()) minStack.pop();
} public int top() {
return stack.peek();
} public int getMin() {
return minStack.peek();
}
}

使用一个Stack:

每次min要被更新的时候,先存入min,再存入新元素。相当于保持一个递减的min序列。  假如elements递减,则栈内元素类似 {min 1, elem1, min2, elem2, min3, elem3}等等,

  1. 这里在insert的时候,假如x <= min,则我们先把之前被更新过的min放进stack里, 把min设为当前的x, 之后把x放入栈
  2. 在pop的时候, 我们pop出一个元素,然后跟min比较,假如等于min,那说明下一个元素是旧的min,我们更新min为 stack.pop(), 也把这个旧的min pop出来
  3. top 直接返回 stack.peek();
  4. getMin直接返回min
class MinStack {
private Stack<Integer> stack = new Stack<>();
int min = Integer.MAX_VALUE; public void push(int x) {
if (x <= min) {
stack.push(min);
min = x;
}
stack.push(x);
} public void pop() {
int peek = stack.pop();
if (peek == min) min = stack.pop();
} public int top() {
return stack.peek();
} public int getMin() {
return min;
}
}

Update:

许多题目现在必须追求最优解了 -____-!!

public class MinStack {
private Stack<Integer> stack = new Stack<>();
private int min = Integer.MAX_VALUE /** initialize your data structure here. */
public MinStack() {
stack = new Stack<>();
} public void push(int x) {
if (x <= min) {
stack.push(min);
min = x;
}
stack.push(x);
} public void pop() {
int top = stack.pop();
if (top == min) min = stack.pop();
} public int top() {
return stack.peek();
} public int getMin() {
return min;
}
} /**
* Your MinStack object will be instantiated and called as such:
* MinStack obj = new MinStack();
* obj.push(x);
* obj.pop();
* int param_3 = obj.top();
* int param_4 = obj.getMin();
*/

Reference:

http://www.geeksforgeeks.org/design-and-implement-special-stack-data-structure/

https://leetcode.com/discuss/21071/java-accepted-solution-using-one-stack

https://leetcode.com/discuss/15679/share-my-java-solution-with-only-one-stack

https://leetcode.com/discuss/19389/java-solution-accepted

https://leetcode.com/discuss/23927/smart-accepted-java-solution-linked-list

https://leetcode.com/discuss/16029/shortest-and-fastest-1-stack-and-2-stack-solutions