Python 实现文件复制、删除

时间:2023-03-09 08:05:22
Python 实现文件复制、删除

自己写的制作 city的语义分割tfrecord  适用于deeplabv3+

自用

"""Converts PASCAL dataset to TFRecords file format."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function import argparse
import io
import os
import sys
import natsort
import PIL.Image
import tensorflow as tf from utils import dataset_util parser = argparse.ArgumentParser() parser.add_argument('--data_dir', type=str, default='/home/a/dataset/cityscapes/',
help='Path to the directory containing the PASCAL VOC data.') parser.add_argument('--output_path', type=str, default='./dataset',
help='Path to the directory to create TFRecords outputs.') parser.add_argument('--train_data_list', type=str, default='./dataset/train.txt',
help='Path to the file listing the training data.') parser.add_argument('--valid_data_list', type=str, default='./dataset/val.txt',
help='Path to the file listing the validation data.') parser.add_argument('--image_data_dir', type=str, default='leftImg8bit',
help='The directory containing the image data.') parser.add_argument('--label_data_dir', type=str, default='gtFine',
help='The directory containing the augmented label data.') def dict_to_tf_example(image_path,
label_path):
"""Convert image and label to tf.Example proto. Args:
image_path: Path to a single PASCAL image.
label_path: Path to its corresponding label. Returns:
example: The converted tf.Example. Raises:
ValueError: if the image pointed to by image_path is not a valid JPEG or
if the label pointed to by label_path is not a valid PNG or
if the size of image does not match with that of label.
"""
with tf.gfile.GFile(image_path, 'rb') as fid:
encoded_jpg = fid.read()
encoded_jpg_io = io.BytesIO(encoded_jpg)
image = PIL.Image.open(encoded_jpg_io)
if image.format != 'PNG':
raise ValueError('Image format not PNG') with tf.gfile.GFile(label_path, 'rb') as fid:
encoded_label = fid.read()
encoded_label_io = io.BytesIO(encoded_label)
label = PIL.Image.open(encoded_label_io)
if label.format != 'PNG':
raise ValueError('Label format not PNG') if image.size != label.size:
raise ValueError('The size of image does not match with that of label.') width, height = image.size example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/encoded': dataset_util.bytes_feature(encoded_jpg),
'image/format': dataset_util.bytes_feature('png'.encode('utf8')),
'label/encoded': dataset_util.bytes_feature(encoded_label),
'label/format': dataset_util.bytes_feature('png'.encode('utf8')),
}))
return example
def scanDir_img_File(dir):
for root, dirs, files in os.walk(dir, True, None, False): # 遍列目录
for f in files:
yield os.path.join(root,f) def scanDir_lable_File(dir):
for root, dirs, files in os.walk(dir, True, None, False): # 遍列目录
# 处理该文件夹下所有文件: for f in files:
if os.path.isfile(os.path.join(root, f)):
a = os.path.splitext(f)
lable = a[0].split('_')[4]
# print(lable)
if lable in ('labelTrainIds'):
# print(os.path.join(root,f))
yield os.path.join(root,f) def create_tf_record(output_filename,
image_dir,
label_dir):
"""Creates a TFRecord file from examples. Args:
output_filename: Path to where output file is saved.
image_dir: Directory where image files are stored.
label_dir: Directory where label files are stored.
"""
imgg = []
writer = tf.python_io.TFRecordWriter(output_filename) img = scanDir_img_File(image_dir)
for imgs in img:
imgg.append(imgs)
image_list = natsort.natsorted(imgg) lable = scanDir_lable_File(label_dir)
lablee = []
for lables in lable:
lablee.append(lables)
label_list = natsort.natsorted(lablee)
for image_path,label_path in zip(image_list,label_list):
print(image_path,label_path)
try:
tf_example = dict_to_tf_example(image_path, label_path)
writer.write(tf_example.SerializeToString())
except ValueError:
tf.logging.warning('Invalid example: %s, ignoring.') writer.close() def main(unused_argv):
if not os.path.exists(FLAGS.output_path):
os.makedirs(FLAGS.output_path) tf.logging.info("Reading from CITY dataset")
train_image_dir = os.path.join(FLAGS.data_dir, FLAGS.image_data_dir,'train')
train_label_dir = os.path.join(FLAGS.data_dir, FLAGS.label_data_dir,'train')
val_image_dir = os.path.join(FLAGS.data_dir, FLAGS.image_data_dir, 'val')
val_label_dir = os.path.join(FLAGS.data_dir, FLAGS.label_data_dir, 'val') train_output_path = os.path.join(FLAGS.output_path, 'city_train.record')
val_output_path = os.path.join(FLAGS.output_path, 'city_val.record') create_tf_record(train_output_path, train_image_dir, train_label_dir)
create_tf_record(val_output_path, val_image_dir, val_label_dir) if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)