hdu 3537(博弈,翻硬币)

时间:2023-03-09 07:47:59
hdu 3537(博弈,翻硬币)

题意:给定了每个正面朝上的硬币的位置,然后每次可以翻1,2,3枚硬币,并且最右边的硬币开始必须是正面朝上的。

分析:

约束条件6:每次可以翻动一个、二个或三个硬币。(Mock Turtles游戏)

初始编号从0开始。

当N==1时,硬币为:正,先手必胜,所以sg[0]=1.

当N==2时,硬币为:反正,先手必赢,先手操作后可能为:反反或正反,方案数为2,所以sg[1]=2。

当N==3时,硬币为:反反正,先手必赢,先手操作后可能为:反反反、反正反、正反正、正正反,方案数为4,所以sg[2]=4。

位置x:0  1  2  3  4   5    6   7    8     9  10  11  12  13  14...

sg[x]:  1  2  4  7  8  11 13 14  16  19  21  22  25  26  28…

看上去sg值为2x或者2x+1。我们称一个非负整数为odious,当且仅当该数的二进制形式的1出现的次数是奇数,否则称作evil。所以1,2,4,7是odious因为它们的二进制形式是1,10,100,111.而0,3,5,6是evil,因为它们的二进制形式是0,11,101,110。而上面那个表中,貌似sg值都是odious数。所以当2x为odious时,sg值是2x,当2x是evil时,sg值是2x+1.

这样怎么证明呢?我们会发现发现,

evil^evil=odious^odious=evil

evil^odious=odious^evil=odious

假设刚才的假说是成立的,我们想证明下一个sg值为下一个odious数。注意到我们总能够在第x位置翻转硬币到达sg为0的情况;通过翻转第x位置的硬币和两个其它硬币,我们可以移动到所有较小的evil数,因为每个非零的evil数都可以由两个odious数异或得到;但是我们不能移动到下一个odious数,因为任何两个odious数的异或都是evil数。

假设在一个Mock Turtles游戏中的首正硬币位置x1,x2,…,xn是个P局面,即sg[x1]^…^sg[xn]=0.那么无可置疑的是n必定是偶数,因为奇数个odious数的异或是odious数,不可能等于0。而由上面可知sg[x]是2x或者2x+1,sg[x]又是偶数个,那么x1^x2^…^xn=0。相反,如果x1^x2^…^xn=0且n是偶数,那么sg[x1]^…^sg[xn]=0。这个如果不太理解的话,我们可以先这么看下。2x在二进制当中相当于把x全部左移一位,然后补零,比如说2的二进制是10,那么4的二进制就是100。而2x+1在二进制当中相当于把x全部左移一位,然后补1,比如说2的二进制是10,5的二进制是101。现在看下sg[x1]^…^sg[xn]=0,因为sg[x]是2x或者2x+1,所以式子中的2x+1必须是偶数个(因为2x的最后一位都是0,2x+1的最后一位都是1,要最后异或为0,2x+1必须出现偶数次)。实际上的情况可能是这样的:

hdu 3537(博弈,翻硬币)

MT游戏当中的P局面是拥有偶数堆石子的Nim游戏的P局面。

这是翻硬币游戏里面种的一种,有了上面的理论之后这道题也就容易了!不过这道题要注意的地方就是去除重复位置!!

代码实现:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; int n, a[]; int main()
{
int flag, i, len, num, x;
while(scanf("%d",&n)!=EOF)
{
flag=;
if(n==)
{
printf("Yes\n");
continue;
}
for(i=; i<n; i++)
scanf("%d",&a[i]);
sort(a,a+n);
len=;
a[len++]=a[];
for(i=;i<n;i++)
if(a[i]!=a[len-])
a[len++]=a[i]; for(i=; i<len; i++)
{
num=;
x=a[i]*;
while(a[i])
{
if(a[i]&)
num++;
a[i]=a[i]>>;
}
if(num%==)
x++;
flag=flag^x;
} if(flag)
printf("No\n");
else
printf("Yes\n");
}
return ;
}