题意不难理解,看了后就能得出下列式子:
(A+C*x-B)mod(2^k)=0
即(C*x)mod(2^k)=(B-A)mod(2^k)
利用模线性方程(线性同余方程)即可求解
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std; typedef long long ll;
ll exgcd(ll a, ll b, ll&x, ll&y) {
if (b == ) {
x = ;
y = ;
return a;
}
ll r = exgcd(b, a%b, y, x);
ll t = x;
y = y - a/b*t;
return r;
}
bool modular_linear_equation(ll a, ll b, ll n) {
ll x, y, x0, i;
ll d = exgcd(a, n, x, y);
if (b%d)
{
printf("FOREVER\n");
return false;
}
x0 = x*(b/d)%n; //x0为方程的一个特解,可以为正也可以为负。题目要求的是最小的非负数
ll ans;
if(x0<)
{
ans=x0;
for(i = ;ans<; i++)
ans=(x0 + i*(n/d))%n;
}
else
{
ans=x0;
ll temp;
for(i=;ans>=;i++)
{
temp=ans;
ans=(x0 - i*(n/d))%n;
}
ans=temp;
}
printf("%I64d\n",ans);
return true;
}
int main()
{
//freopen("in.txt","r",stdin);
ll A,B,C,k;
while(scanf("%I64d%I64d%I64d%I64d",&A,&B,&C,&k))
{
if(A== && B== && C== && k==)
break;
ll k2=(ll)<<k;
if(A==B)
printf("0\n");
else
modular_linear_equation(C,B-A,k2);
}
return ;
}