/*
** 日期: 2013-9-12
** 题目大意:有n个数,划分为多个部分,假设M份,每份不能多于L个。每个数有一个h[i],
** 每份最右边的那个数要大于前一份最右边的那个数。设每份最右边的数为b[i],
** 求最大的sum{b[i]² - b[i - 1]},1≤i≤M,其中b[0] = 0。
** 思路:朴素DP为,dp[i]表示以i为结尾的最大划分。那么dp[i] = max{dp[j] - h[j] + h[i]²},
** 1≤i-j≤L,h[j]<h[i]。这种会超时,采取线段树优化。因为有两个限制,考虑到若h[j]≥h[i],
** 那么求i的时候一定不会用到j,那么先按h排序再DP(h相同的,i大的排前面)。
** __int64 没改完,导致wa了无数次
*/ #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define lson rt<<1,left,m
#define rson rt<<1|1,m+1,right
#define mid (left+right)>>1
using namespace std; typedef __int64 LL ;
const int maxn = 100005;
LL maxt[maxn<<2];
int L,n;
struct node{
int pos;LL h;
node(int id = 0,LL hight = 0):pos(id),h(hight){}
bool operator < (node a)const{
if( h == a.h)return pos > a.pos;
return h < a.h;
}
}arr[maxn];
void update(int rt,int left,int right,int place,LL val){
if( left == right){
maxt[rt] = val;
return ;
}
int m = mid;
if( place <= m)update(lson,place,val);
else update(rson,place,val);
maxt[rt] = max(maxt[rt<<1],maxt[rt<<1|1]);
}
LL query(int rt,int left,int right,int l,int r){
if( left >= l && right <= r){
return maxt[rt];
}
int m = mid;
LL res = -1;
if( l <= m)res = max(res,query(lson,l,r));
if( r > m )res = max(res,query(rson,l,r));
return res;
}
LL solve(){
sort(arr,arr+n);
LL res = -1;
memset(maxt,-1,sizeof(maxt));
update(1,0,n,0,0);
for(int i = 0; i < n; i++){
LL tmp = query(1,0,n,max(arr[i].pos-L,0),arr[i].pos - 1);
if( tmp == -1 ){
if( arr[i].pos == n)return -1;
continue;
}
res = tmp + (LL)arr[i].h*arr[i].h;
if( arr[i].pos == n)return res;
update(1,0,n,arr[i].pos,res - arr[i].h);
}
return res;
}
int main(){
int t,cas = 1;LL h;
scanf("%d",&t);
while( t-- ){
scanf("%d%d",&n,&L);
for(int i = 0; i < n; i++){
scanf("%I64d",&h);
arr[i] = node(i+1,h);
}
LL ans = solve();
printf("Case #%d: ",cas++);
if( ans == -1)puts("No solution");
else printf("%I64d\n",ans);
}
return 0;
}