题目链接:http://poj.org/problem?id=2387
Dijkstra算法: //求某一点(源点)到另一点的最短路,算法其实也和源点到所有点的时间复杂度一样,O(n^2);
图G(V,E),设置一个顶点集合S,不断贪心选择,指导S扩充为V,计算结束。
贪心选择的方法:节点个数n,源节点v,先在S中加入源节点v,初始化源节点,开始扩充S,找到一个点,他离S集合最近,加入到S集合中去,再利用这个点更新S本身中的最短路径。
题目大意:很裸的Dijkstra,但是这里有两点
1、图是双向的,存图的时候存双向图。
2、有重边,两个点之间有多条边,不断更新
模板:
#include <stdio.h>
#include <string.h>
#include <algorithm>
#define NUM 1005
#define maxint (1<<29) using namespace std; int c[NUM][NUM];
int dist[NUM];
int pre[NUM]; ///Dijkstra
///顶点个数n,源点v
///数组dist保存从源点v到每个顶点的最短特殊路径长度
///数组prev保存每个顶点在最短路径上的前一个节点
void dijkstra (int n,int v,int dist[],int prev[],int c[][NUM])
{
int i,j;
bool s[NUM];
///初始化数组
for(i=; i<=n; i++)
{
dist[i] = c[v][i];
s[i]=false;
if(dist[i]>maxint) prev[i]=;
else prev[i] = v;
} ///初始化源节点
dist[v] = ;
s[v] = true;
for(i=; i<n; i++) ///其余节点
{
/// 在数组dist中寻找未处理节点的最小值
int tmp = maxint;
int u = v;
for(j=; j<=n; j++)
{
if(!s[j]&&(dist[j]<tmp))
{
u=j;
tmp=dist[j];
}
} s[u] = true; ///节点u加入s中
///利用节点u更新数组dist
for(j=; j<=n; j++)
{
if(!s[j]&&c[u][j]<maxint)
{
///newdist为从源节点到该点的最短特殊路径
int newdist = dist[u] + c[u][j];
if(newdist<dist[j])
{
///修改最短路径
dist[j]=newdist;
///修改j的前一个节点
prev[j]=u;
}
}
}
}
} ///根据数组pre计算单源最短路径的算法
/*
void traceback (int v,int i,int prev[])
{
printf("%d<--",i);
i=prev[i];
if(i!=v) traceback(v,i,prev);
if(i==v) printf("%d",i);
}
*/ ///根据数组pre计算源点v到所有其他顶点最短路径的迭代算法
/*
for(int j=2;j<=n;j++)
{
printf("%d",j);
int t=pre[j];
while(t!=1)
{
printf("<--%d",t);
t=pre[t];
}
printf("<--1\n");
}
*/ int main()
{
int n,v;
for(int i=; i<NUM; i++)
{
for(int j=; j<NUM; j++)
c[i][j] = maxint + ;
}
scanf("%d%d",&v,&n);
for(int i=; i<=v; i++)
{
int father,son,val;
scanf("%d%d%d",&father,&son,&val);
c[father][son]=c[son][father]=min(c[son][father],val);
}
dijkstra(n,n,dist,pre,c);
printf("%d\n",dist[]);
return ;
}