算法思想
①从一个源点开始,找距离它最近的点顶点v
②然后以顶点v为起点,去找v能到达的顶点w,即v的邻居
比较源点直接到 v的距离和(源点到v的距离+v到w的距离)
若大于后者则更新源点的到w的开销
③然后去掉这个顶点v,去寻找下一个到距离源点最近的顶点重复②
最后更新完所有顶点
算法思路
1.用邻接表或者一个二维数组(邻接矩阵)来存储图
2.设置dist存储到源点的最短距离
known标记顶点是被处理
path记录路径(到达该顶点的上一个顶点)
3.这步的实现和算法思想中描述的一样
4.递归显示出源点到各个顶点的路径
代码实现
下面是完整的代码实现,分别用了邻接表和邻接矩阵来存图
样图如下
邻接矩阵存图
#include <iostream> #include <cstdlib> #define Infinity 10000 #define VERSIZE 8 #define notvertex -1 using namespace std; typedef int Vertex; int dist[VERSIZE];//存储各顶点到源点的最短距离 bool S[VERSIZE];//将处理过的顶点设置为true Vertex path[VERSIZE];//存储到该顶点的上一个顶点 void ReadGraph(int Graph[VERSIZE][VERSIZE], int m)// 边m { ; Vertex u, v; int weight; ; i <= m; i++) { cout << "请输入第" << i << "条边:"; cin >> u >> v; cout << "请输入边(" << u << "," << v << ")的权重:"; cin >> weight; Graph[u][v] = weight; } } //在没处理过的顶点里 找出距离源点最近的顶点 Vertex FindMinIndex() { int min = Infinity; Vertex min_index = ; ; i< VERSIZE; i++) { if (!S[i] && dist[i]<min) { min = dist[i]; min_index = i; } } return min_index; } //算法关键 void Dijkstra(int Graph[VERSIZE][VERSIZE], Vertex source) { ; // 初始化数组 从顶点为1开始能直接到达source的 初始化dis数组 0代表不可达 ; i < VERSIZE; i++) { dist[i] = (Graph[source][i] == ? Infinity : Graph[source][i]); S[i] = false; if (dist[i] != Infinity) path[i] = source; else path[i] = notvertex; } //源点到自身 dist[source] = ; S[source] = true; //循环VERSIZE-1次 ; count < VERSIZE; count++) { Vertex u = FindMinIndex();//找出距离源点最近的顶点 S[u] = true;//标记为已知 ; v < VERSIZE; v++) { && !S[i])//u可达v 且 v未知 { if (dist[v] >(Graph[u][v] + dist[u])) { dist[v] = Graph[u][v] + dist[u]; path[v] = u; } } } } } void PrintDist(Vertex source) { ; printf("Source vertex Dist\n"); ; i< VERSIZE; i++) { if (dist[i] != Infinity) printf("%d -> %d\t%d\n", source, i, dist[i]); else printf("%d -> %d\tInfinity\n", source, i); } } //输出路径 void PrintPath(int v) { if (path[v] != notvertex) { PrintPath(path[v]); printf("--->"); } printf("%d", v); } int main() { ,j=; }; ; i < VERSIZE; i++)//初始化二维数组 { ; j < VERSIZE; j++) Graph[i][j] = ; } ReadGraph(Graph, ); Dijkstra(Graph, );//源点是1 PrintDist(); printf("源点1顶点7的路径:\n"); PrintPath();//打印从源点到顶点7的路径 system("pause"); ; }
运行结果
邻接表存图
#include <iostream> #include <cstdlib> #define VERSIZE 8 #define NotVertex -1 #define Infinity 100000 using namespace std; typedef int Vertex; typedef struct vernode VerNode;//定义顶点结构 typedef struct tablelist Table;//定义邻接表 struct vernode { Vertex ver; int weight;//权重 VerNode * pNext; }; struct tablelist { VerNode header; bool known; int dist; Vertex path; }T[VERSIZE]; //初始化标表+读图 void InitTable(Table T[], int n, int m)//顶点数n 边数m { ; ; i <= n; i++)//初始化表头 { T[i].header.ver = i; T[i].header.weight = ;//到自身的权重为0 T[i].header.pNext = NULL; T[i].dist = Infinity; T[i].known = false; T[i].path = NotVertex; } Vertex u, v;//边(u,v) ; VerNode * ptemp; ; i <= m; i++) { cout << "请输入第" << i << "条边:"; cin >> u >> v; cout << "请输入边(" << u <<","<< v << ")的权重:"; cin >> wei; ptemp = (VerNode*)malloc(sizeof(VerNode)); ptemp->ver = v; ptemp->weight = wei; ptemp->pNext = T[u].header.pNext; T[u].header.pNext = ptemp; } } //找出到源点距离最小的顶点 Vertex FindMinIndex(Table T[], int n) { ; int min = Infinity; Vertex min_index = NotVertex; ; i <= n; i++) { if (!T[i].known && T[i].dist < min) { min = T[i].dist; min_index = i; } } return min_index; } //下面是算法关键步骤啦 dijkstra算法 void Dijkstra(Table T[], int n, Vertex source)//source源点 顶点数n { ; T[source].dist = ;//源点到源点的距离为0 T[source].known = true;//源点已知 //在做循环处理前 还要赋值给能直接到达源点的顶点的dist数据 VerNode * ptemp;//能直接到达源点的顶点 ptemp = T[source].header.pNext; Vertex w; while (ptemp) { w = ptemp->ver; T[w].dist = ptemp->weight; T[w].path = source; ptemp = ptemp->pNext; } Vertex v; //处理n-1个顶点 ; i <= n-;i++) { //找出到源点距离最小的顶点 v = FindMinIndex(T, n); if (v == NotVertex) break; T[v].known = true; ptemp = T[v].header.pNext;//找出顶点V所能到的顶点看是否能跟新他们的dist while (ptemp) { w = ptemp->ver; if (!T[w].known && T[w].dist > ptemp->weight + T[v].dist)//进行跟新操作 { T[w].dist = ptemp->weight + T[v].dist; T[w].path = v; } ptemp = ptemp->pNext; } } } //下面输出我们的最短路径吧 void PrintPath(Table T[],Vertex v) { if (T[v].path != NotVertex) { PrintPath(T, T[v].path); cout << " ---> "; } cout << v; } int main() { Vertex v; InitTable(T, , ); Dijkstra(T, , ); cout << "源点1到各个顶点的最短路径如下:" << endl; ; v <= ; v++) { PrintPath(T, v); cout << endl; } system("pause"); ; }
运行结果
需要其他的信息可以根据需要输出
修改补充后的:SakuraOne Dijkstra单源最短路径算法
THOUGHTS
算法思想好理解 实现的话也挺好理解 但是关键就是理解的程度
学习嘛 就是不断重复的过程 对想想就对了还有多动手画画