Question
Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
- Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
- The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4}, A solution set is: (-1, 0, 1) (-1, -1, 2)
Solution
First, we sort the array and then implement 2 pointers to get 2 Sum. Time complexity is O(n2)
Notice here, we need to consider duplicates in result.
public class Solution {
public List<List<Integer>> threeSum(int[] nums) {
if (nums == null || nums.length < 1)
return null;
Arrays.sort(nums);
int length = nums.length;
List<List<Integer>> result = new ArrayList<List<Integer>>();
for (int i = 0; i <= length - 3; i++) {
// Remove duplicates
if (i > 0 && nums[i] == nums[i - 1])
continue;
int target = 0 - nums[i];
int l = i + 1, r = length - 1;
while (l < r) {
if (nums[l] + nums[r] == target) {
result.add(Arrays.asList(nums[i], nums[l], nums[r]));
while (l < r && nums[l] == nums[l+1]) l++;
while (l < r && nums[r] == nums[r-1]) r--;
l++;
r--;
} else if (nums[l] + nums[r] < target) {
l++;
} else {
r--;
}
}
}
return result;
}
}