java.util.concurrent在相应的并发集合的包中定义的通用集合类,为了有效地处理并发场景。间CopyOnWriteArrayList它是合适ArrayList。顾名思义CopyOnWrite,当写副本,在这里写下包含集合改变操作,将创建一个副本。
CopyOnWriteArrayList的实现
类的定义
public class CopyOnWriteArrayList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
能够看到没有继承不论什么子类,实现接口和ArrayList类似。
关键属性
/** The lock protecting all mutators */
transient final ReentrantLock lock = new ReentrantLock();
/** The array, accessed only via getArray/setArray. */
private volatile transient Object[] array;
相同是採用数组方式实现,多了一个volatile声明,用于保证线程可见性。没有size声明表示实际包括元素的大小。多了一个ReentrantLock对象声明。
常见方法
构造方法
public CopyOnWriteArrayList() {
setArray(new Object[0]); //默认创建一个空数组
}
public CopyOnWriteArrayList(Collection<? extends E> c) {
Object[] elements = c.toArray();
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elements.getClass() != Object[].class)
elements = Arrays.copyOf(elements, elements.length, Object[].class);//拷贝一份数组
setArray(elements);
}
size方法,直接返回数组大小,说明array数组仅仅包括实际大小的空间
public int size() {
return getArray().length;
}
get方法,和ArrayList中类似,只是没有index的范围推断
public E get(int index) {
return (E)(getArray()[index]);
}
add方法,能够看到不管是在尾部还是指定位置加入。都有锁定和解锁操作。在设置值之前都先将原先数组拷贝一份并扩容至size+1大小。
public boolean add(E e) {
final ReentrantLock lock = this.lock;
lock.lock(); //锁住
try {
Object[] elements = getArray();
int len = elements.length;
Object[] newElements = Arrays.copyOf(elements, len + 1);//拷贝array属性,并扩展为length+1大小
newElements[len] = e;
setArray(newElements);
return true;
} finally {
lock.unlock(); //解锁
}
} public void add(int index, E element) {
final ReentrantLock lock = this.lock;
lock.lock();
try {
Object[] elements = getArray();
int len = elements.length;
if (index > len || index < 0)
throw new IndexOutOfBoundsException("Index: "+index+
", Size: "+len);
Object[] newElements;
int numMoved = len - index;
if (numMoved == 0) //尾部加入
newElements = Arrays.copyOf(elements, len + 1);
else {
newElements = new Object[len + 1];
//elements[0,index) ---> newElements[0,index)
System.arraycopy(elements, 0, newElements, 0, index);
//elements[index,len) --> newElements[index+1,len+1)
System.arraycopy(elements, index, newElements, index + 1,
numMoved);
}
newElements[index] = element;
setArray(newElements);
} finally {
lock.unlock();
}
}
set方法,ArrayList中set方法直接改变数组中相应的引用,这里须要拷贝数组然后再设置。
(else那个分支没看懂,为什么值没有改变还须要设置来保证volatile写语义)
public E set(int index, E element) {
final ReentrantLock lock = this.lock;
lock.lock();
try {
Object[] elements = getArray();
Object oldValue = elements[index];
if (oldValue != element) {
int len = elements.length;
Object[] newElements = Arrays.copyOf(elements, len);
newElements[index] = element;
setArray(newElements);
} else {
// Not quite a no-op; ensures volatile write semantics
setArray(elements);
}
return (E)oldValue;
} finally {
lock.unlock();
}
}
remove(int)方法,和指定位置加入类似,须要拷贝[0,index)和[index+1,len)之间的元素
public E remove(int index) {
final ReentrantLock lock = this.lock;
lock.lock();
try {
Object[] elements = getArray();
int len = elements.length;
Object oldValue = elements[index];
int numMoved = len - index - 1;nt
if (numMoved == 0) //删除最后一个元素
setArray(Arrays.copyOf(elements, len - 1));
else {
Object[] newElements = new Object[len - 1];
//elements[0,index) --> newElements[0,index)
System.arraycopy(elements, 0, newElements, 0, index);
//elements[index+1,len) --> newElements[index,len-1)
System.arraycopy(elements, index + 1, newElements, index,
numMoved);
setArray(newElements);
}
return (E)oldValue;
} finally {
lock.unlock();
}
}
remove(Object)方法,分配一个len-1大小的新数组。遍历原来数组,假设找到则将原来数组以后的元素复制到新数组中并将list设置为新数组,否则直接给新数组赋值上原来数组。
public boolean remove(Object o) {
final ReentrantLock lock = this.lock;
lock.lock();
try {
Object[] elements = getArray();
int len = elements.length;
if (len != 0) {
// Copy while searching for element to remove
// This wins in the normal case of element being present
int newlen = len - 1;
Object[] newElements = new Object[newlen]; for (int i = 0; i < newlen; ++i) {
if (eq(o, elements[i])) {
// found one; copy remaining and exit
for (int k = i + 1; k < len; ++k)
newElements[k-1] = elements[k];
setArray(newElements);
return true;
} else
newElements[i] = elements[i];
} // special handling for last cell
if (eq(o, elements[newlen])) {
setArray(newElements);
return true;
}
}
return false;
} finally {
lock.unlock();
}
}
迭代器的实现
ArrayList中迭代器支持fast fail,一旦检測到遍历过程中发送了改动则会抛出ConcurrentModificationException;CopyOnWriteArrayList的迭代器因为改动的时候都会又一次copy一份数组,因此不存在并发改动问题。也不会抛出ConcurrentModificationException。
相同支持单向和双向迭代器,其iterator和listIterator方法都是通过内部类COWIterator创建。仅仅是前者返回接口限定为单向迭代Iterator<E>。
COWIterator定义
/** Snapshot of the array **/
private final Object[] snapshot;
/** Index of element to be returned by subsequent call to next. */
private int cursor;
构造器
private COWIterator(Object[] elements, int initialCursor) {
cursor = initialCursor;
snapshot = elements;
}
iterator和listIterator中会传递当前数组的引用和cursor(无參方法为0,有參数方法为相应值)
常见方法
public boolean hasNext() {
return cursor < snapshot.length;
}
public boolean hasPrevious() {
return cursor > 0;
}
public E next() {
if (! hasNext())
throw new NoSuchElementException();
return (E) snapshot[cursor++];
}
public E previous() {
if (! hasPrevious())
throw new NoSuchElementException();
return (E) snapshot[--cursor];
}
另外其它add、remove和set改动容器的方法都没有实现,直接throw new UnsupportedOperationException();
总结
1. CopyOnWriteArrayList的迭代器保留一个运行底层基础数组的引用,这个数组当前位于迭代器的起始位置,因为基础数组不会被改动(改动都是复制一个新的数组),因此对其同步仅仅须要保证数组内容的可见性。多个线程能够同一时候对这个容器进行迭代。而不会彼此干扰或者与改动容器的线程互相干扰。
不会抛出CocurrentModificationException。而且返回元素与创建迭代器创建时的元素全然一致。不必考虑之后改动操作带来影响。
2. 每次改动容器都会复制底层数组,这须要一定开销,特别是容器规模较大。仅当迭代操作远远多于改动操作时,才应该使用CopyOnWriteArrayList。
版权声明:本文博主原创文章。博客,未经同意不得转载。