《opencv学习》 之 OTSU算法实现二值化

时间:2023-03-09 03:04:30
《opencv学习》 之 OTSU算法实现二值化

主要讲解OTSU算法实现图像二值化:

        1.统计灰度级图像中每个像素值的个数。

    2.计算第一步个数占整个图像的比例。

    3.计算每个阈值[0-255]条件下,背景和前景所包含像素值总个数和总概率(就是分别计算背景和前景下第一步和第二步的              和)。

    4.比较第三步前景和背景之间方差,找到最大的一个确定为选定的阈值。

 OTSU源码:
1 #include <opencv2/opencv.hpp>
#include <iostream>
#include <windows.h> using namespace cv;
using namespace std; int OTSU(Mat& src);
int main(int argc, char**argv)
{
Mat input_image;
input_image = imread("1.jpg"); if (input_image.data == NULL) {
return -; cout << "can't open image.../";
}
cvtColor(input_image, input_image, CV_BGR2GRAY);
const int thre_num = OTSU(input_image);
const int height = input_image.rows;
const int width = input_image.cols;
for (size_t i = ; i < height; i++)
{
for (size_t j = ; j < width; j++)
{
input_image.at<uchar>(i, j) = input_image.at<uchar>(i, j) >= thre_num ? : ;
}
}
imshow("input_image2", input_image);
waitKey();
return ;
} int OTSU(Mat& src)
{
const int height = src.rows;
const int width = src.cols;
int nCountPix[] = { };//数量
int nProPix[] = { };//概率
//------------统计像素点个数------------//
for (size_t i = ; i < height; i++)
{
for (size_t j = ; j < width; j++)
{
nCountPix[src.at<uchar>(i, j)]++;
}
}
//-------统计每个像素个数占得比例------//
for (size_t i = ; i < ; i++)
{
nProPix[i] = nCountPix[i] / (height*width);
}
double var_max = ;//设置一个参数,作为比较结果
int threashold = ;
for (size_t i = ; i < height; i++)
{
//----数量count、概率probility、平均概率average、方差variance----//
double c0 = , c1 = , p0 = , p1 = , a0 = , a1 = , var = ;
for (size_t j = ; j < width; j++)
{
//----前景和背景的计算
if (i < j)//背景
{
c0 += nCountPix[j];//总数量
p0 += nCountPix[j] * nProPix[j];//总概率
}
else//前景
{
c1 += nCountPix[j];//总数量
p1 += nCountPix[j] * nProPix[j];//总概率
}
}
a0 = p0 / c0;
a1 = p1 / c1;
var = static_cast<double>(c0*c1*pow((a0 - a1), )); if (var > var_max)
{
var_max = var;
threashold = i;
}
}
return threashold;
}

《opencv学习》 之 OTSU算法实现二值化

《opencv学习》 之 OTSU算法实现二值化