题目描述
Byteasar the Cryptographer works on breaking the code of BSA (Byteotian Security Agency). He has alreadyfound out that whilst deciphering a message he will have to answer multiple queries of the form"for givenintegers ,
and
, find the number of integer pairs
satisfying the following conditions:
,
,
, where
is the greatest common divisor of
and
".
Byteasar would like to automate his work, so he has asked for your help.
TaskWrite a programme which:
reads from the standard input a list of queries, which the Byteasar has to give answer to, calculates answers to the queries, writes the outcome to the standard output.
FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。作为FGD的同学,FGD希望得到你的帮助。
输入输出格式
输入格式:
The first line of the standard input contains one integer (
),denoting the number of queries.
The following lines contain three integers each:
,
and
(
), separated by single spaces.
Each triplet denotes a single query.
输出格式:
Your programme should write lines to the standard output. The
'th line should contain a single integer: theanswer to the
'th query from the standard input.
输入输出样例
2
4 5 2
6 4 3
3
2
题解:莫比乌斯反演+分块
其实我写过一边博客上的题跟这个几乎一摸一样,而且这个还不要容斥
在这里偷个懒,贴出题目 [HAOI2011]Problem b
本题卡常数,所以能不用long long就不用
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long lol;
lol ans;
int prime[];
lol mu[];
int n,m,d,tot;
bool vis[];
void mobius()
{int i,j;
mu[]=;
for (i=;i<=;i++)
{
if (vis[i]==)
{
tot++;
prime[tot]=i;
mu[i]=-;
}
for (j=;j<=tot,i*prime[j]<=;j++)
{
vis[i*prime[j]]=;
if (i%prime[j]==)
{
mu[i*prime[j]]=;
break;
}
mu[i*prime[j]]=-mu[i];
}
}
for (i=;i<=;i++)
mu[i]+=mu[i-];
}
void solve()
{int i;
int pos=;
int r=min(n,m);
for (i=;i<=r;i=pos+)
{
if (n/(n/i)>m/(m/i))
pos=m/(m/i);
else pos=n/(n/i);
ans+=(mu[pos]-mu[i-])*(long long)(n/i)*(long long)(m/i);
}
}
int main()
{int T;
cin>>T;
mobius();
while (T--)
{
scanf("%d%d%d",&n,&m,&d);
n=n/d;m=m/d;
ans=;
solve();
printf("%lld\n",ans);
}
}